
DAT3 REPORT

Applying
Machine Learning

to Robocode

Morten Gade
Michael Knudsen
Rasmus Aslak Kjær
Thomas Christensen

Christian Planck Larsen
Michael David Pedersen

Jens Kristian Søgaard Andersen

Department of Computer Science
Aalborg University

16th of December 2003

The Faculty of Engineering and Science
Aalborg University

Department of Computer Science

Title:

Applying Machine Learning
to Robocode

Project Period:

DAT3,
3rd of September -
16th of December 2003

Project Group:

E2-216

Group Members:

Morten Gade
Michael Knudsen
Rasmus Aslak Kjær
Thomas Christensen
Christian Planck Larsen
Michael David Pedersen
Jens Kristian Søgaard Andersen

Supervisor:

Søren Holbech Nielsen

Number of copies: 9

Report – pages: 139

Appendix – pages: 18

Total number of pages: 157

Abstract

This report documents the development
of the Robocode robot, Aalbot, which
uses the machine learning methods rein-
forcement learning, genetic programming
and neural networks. An analysis reveals
the nature of the Robocode game, the
previous work done with machine learn-
ing in Robocode and agent architectures
suitable for Robocode robots.

A modular hybrid agent architecture
is designed specifically for the character-
istics of Robocode. A discussion of the use
of machine learning and problem solving
in a general context leads to an argued
choice of the machine learning methods
used in Aalbot. Detailed designs of each
of the modules incorporating the machine
learning methods are then presented and
evaluated.

Aalbot is finally tested and found to
be competitive against traditional robots
which do not employ machine learning.

Preface

The authors of this DAT3 project are seven 5th semester students at the De-
partment of Computer Science, Aalborg University, Denmark.

Source code for the Robocode robot developed in this project, Aalbot, can be
found on the accompanying CD-ROM. Refer to the README file in the root
directory of this CD for instructions on how to experience Aalbot in live action.

Throughout the report general concepts and methods in a source are cited by
referring entire chapters, while self contained equations and definitions are
referred to by page number. Implementation level terms such as class names
and robot names will be typeset in the Typewriter font.

Morten Gade Michael David Pedersen

Christian Planck Larsen

Jens Kristian Søgaard Andersen

Thomas Christensen

Michael Knudsen

Rasmus Aslak Kjær

Contents

I Analysis 3

1 Robocode in Essence 5

1.1 The Gameplay . 5

1.2 Robocode Strategies . 9

1.2.1 Percepting . 9

1.2.2 Planning . 10

1.2.3 Moving . 11

1.2.4 Targeting and Shooting 12

1.3 Summary . 13

2 Previous Work 15

2.1 Definition of Machine Learning 15

2.2 Pattern Matching . 16

2.2.1 Neural Network Targeting 16

2.2.2 Symbolic Pattern Matching 18

2.2.3 Nondeterminism . 19

2.3 Genetic Programming . 19

2.3.1 Design Outline . 19

2.3.2 Results . 20

2.4 Considerations . 21

3 Agent Architectures 23

3.1 Definitions . 23

3.2 Deliberative Architectures . 24

3.3 Reactive Architectures . 26

3.4 Hybrid Architectures . 29

4 Analysis Results 31

II Design 33

5 Aalbot Architecture 35

5.1 Structure . 35

5.2 World State Component . 36

5.3 Subsumption Layers Component 37

5.4 Arbitrator Component . 37

5.5 Design Considerations . 38

6 Component Design 39

6.1 World State Component . 39

6.1.1 Table of Enemy Information 39

6.1.2 Fading Memory Maps . 40

6.2 Arbitrator Component . 42

7 Module Design 43

7.1 Necessity of Machine Learning 43

7.1.1 Problem Models . 44

7.1.2 Properties of a Good Model 44

7.1.3 Problem Solving Methods 46

7.2 Percepting . 49

7.2.1 Radar Control . 50

7.2.2 Sensor Interpretation . 50

7.3 Planning . 50

7.3.1 Target Selection . 51

7.4 Moving . 52

7.4.1 Fading Memory Anti-gravity Movement 52

7.4.2 Wall Avoidance . 53

7.4.3 Randomisation . 54

7.4.4 Bullet Dodging . 54

7.5 Targeting and Shooting . 54

7.6 Module Priorities . 55

8 Neural Network Module 57

8.1 Target Function Representation 57

8.1.1 Input Parameter Selection 58

8.1.2 Network Output Encoding 59

8.1.3 Summary . 61

8.2 Preprocessing . 62

8.2.1 Time Normalisation . 62

8.2.2 Translation and Scaling 64

8.3 Training . 66

8.3.1 Training Algorithm . 66

8.3.2 Network Topology . 67

8.3.3 Data Collection . 68

8.4 Summary . 69

9 Reinforcement Learning Module 71

9.1 Optimisation Task . 71

9.2 Goals . 71

9.3 Rewards . 72

9.4 Data Representation . 73

9.4.1 Input Data . 73

9.4.2 Output Data . 73

9.5 States . 73

9.5.1 Segmentation . 74

9.5.2 Probability from the Targeting Module 75

9.5.3 Enemy Energy Level . 75

9.5.4 Distance to the Enemy . 76

9.5.5 After-states . 76

9.6 Actions . 77

9.6.1 Action Selection . 77

9.7 Transition Function . 78

9.8 Summary . 79

10 Genetic Programming Modules 81

10.1 Customised Approach . 81

10.1.1 Representation of Individuals 82

10.1.2 Distributed Evolution . 84

10.1.3 Generation of Initial Demes 85

10.1.4 Fitness Measure . 86

10.1.5 Termination Criterion . 86

10.1.6 Genetic Operations . 86

10.2 Movement Module . 87

10.3 Radar Module . 88

10.4 Summary . 89

III Evaluation 91

11 Neural Network Evaluation 93

11.1 Choice of Method . 93

11.2 Test Environment . 95

11.3 Performance Measure . 95

11.4 Learning Rate . 97

11.5 Momentum . 98

11.6 History Size . 100

11.7 Number of Hidden Neurons . 101

11.8 Conclusion . 101

12 Reinforcement Learning Evaluation 103

12.1 Test Environment . 103

12.2 Performance Measure . 104

12.3 The Cumulative Reward . 105

12.4 The Action Selection Pattern . 106

12.5 Conclusion . 108

13 Genetic Programming Evaluation 111

13.1 Training Parameters . 111

13.2 Test Environment . 112

13.3 Movement Module Results . 113

13.3.1 Default Parameters . 113

13.3.2 Size Penalised Fitness Function 116

13.3.3 Modified Parameters . 120

13.3.4 Modified Robot . 120

13.4 Radar Control Module Results 122

13.5 Conclusion . 124

14 Conclusion 127

14.1 Measurable Success Criteria . 127

14.2 Future Work . 127

14.3 Recommendations . 128

Litterature 129

A Introduction to Neural Networks 131

A.1 Architecture . 131

A.2 Computational Units . 132

A.3 Training . 133

A.3.1 Error Representation . 133

A.3.2 Backpropagation . 134

A.3.3 The Algorithm . 135

B Introduction to Reinforcement Learning 137

B.1 Reinforcement Learning Notation 137

B.2 Q-learning . 139

B.3 Algorithm for Learning Q . 140

B.4 Action Selection . 141

C Introduction to Genetic Programming 143

C.1 Background . 143

C.2 Applying Genetic Programming 144

C.2.1 Genetic Operations . 145

C.2.2 The Algorithm . 147

Introduction

Let the battle begin! Yet another intensive fight is about to take place as our
robotic battle tank is dumped onto the battlefield together with a number of
opponents. Common to them all is their definitive goal: Outmaneuver all
opponents and ruthlessly put an end to their existence.

Our robot immediately scans its surroundings and spots an enemy robot head-
ing straight toward it. The enemy fires its gun, but our robotmanages to dodge
the bullet just in time. To avoid the enemy our robot engages in a circular
movement, which brings it behind the enemy. Now it is pay-back time. While
repeatedly firing the robot moves with maximum speed in the direction of the
enemy and finally rams him from behind causing his annihilation. . .

The above was a glimpse into the world of Robocode – a so called programming
game, where programmers use their skills in Java to write a program defining
the behaviour of a robotic battle tank. Once a programmer feels that his robot
is fit for fight, he can submit it to various competitions where it will battle
against other programmed robots.

The preliminary goal of this project is to:

Design and implement a robot, Aalbot, usingmachine learning that
will score well in combat against other robots. The robot will differ
from the majority of other robots in that it should be able to learn
from experience, allowing it to gradually improve its skills over
time. Moreover, the robot should posses adaptability such that it
is capable of acting and reacting according to the properties of its
environment.

To create such a robot, a number techniques from the area of machine learning
(ML) will have to be applied. The focus of this project will thus be on investig-
ating, applying and evaluating different ML techniques suitable for the control
of a robotic battle tank within the framework of Robocode.

The report is separated into three parts, namely analysis, design and finally
evaluation. To provide an overview of the report, the three parts are briefly
introduced below.

1. Analysis. The first part of the analysis will introduce and explain the
details of the Robocode framework. Specific strategies that a robot can

1

2

adopt in a battle to improve its chances of winning are analysed. Fol-
lowing this is a brief study of some existing robots, which have applied
ML techniques with success. This will provide valuable information that
will help direct the design of our robot. In the last part of the analysis a
robot is viewed in a more general setting as an autonomous agent, and
three general agent architectures are considered. The preliminary goal
will guide the analysis and lead to an elaboration of the success criteria
for this project.

2. Design. An argued selection of suitable machine learning methods is
made based on the knowledge gained in the analysis. The selectedmeth-
ods are considered in relation to Robocode with emphasis on how the
battle strategies recommended from the analysis and the chosen agent
architecture can be combined with or supported by these methods. The
design part results in a complete specification of Aalbot.

3. Evaluation. How and to which degree the design has been realized is
documented in this last part of the report. The created robot will be
tested in various settings to see if it manages to fulfill the success cri-
teria defined in the analysis. The results of these tests are evaluated and
discussed.

Part I

Analysis

3

Chapter 1

Robocode in Essence

Robocode is a framework by IBM AlphaWorks for creating and running pro-
grammable, competing robots in Java. Since the initial release in 2001, it has
evolved a great deal and today a big community exists in which robot design
ideas and source codes are shared. Tournaments and ongoing leagues are ar-
ranged and web sites with rankings of robots are continuously updated. In
this chapter the gameplay and rules of the Robocode game are described. Fur-
thermore different game strategies will be introduced and analysed.

This chapter is primarily based on [AN01a] and [AN01b].

Figure 1.1: An illustration of a Robocode robot.[Li02]

1.1 The Gameplay

In Robocode a number of robots battle to the death in an arena. A battle con-
sists of a number of rounds, the winner of the battle is the robot with the most
points. A round ends when all robots but one are dead – the remaining robot
is the survivor of that round. The scoring scheme of Robocode is introduced
later. The robots start with an energy level of 100 and die when the energy
level falls below zero. Robots fight each other by shooting with a gun moun-
ted on a turret. The robot is equipped with an radar, which can scan for other
robots up to a distance of 1200 pixels away. The radar returns information

5

6 The Gameplay

90 deg

0 deg

180 deg

-90 deg

(0, 0)

Figure 1.2: The coordinate system used in Robocode. Note the unusual orient-
ation of the axes.

about the scanned robot namely distance, heading, velocity, name and energy.
The radar, gun turret and robot body can rotate 360 degrees independent of
each other, though the gun turret can be locked to follow the vehicle rotations,
and the radar can be locked to follow the gun turret and vehicle rotations. The
gun can fire with variable power and it heats up when it fires. A robot has to
wait for the gun to cool down before another shot can be fired, and the bullet
travels faster when fired with low power. If two robots collide, they both lose
0.6 energy points. If a robot is heading toward an opponent upon colliding
with it, it is by Robocode considered ramming and rewarded with 1.2 score
points. All battles take place in a rectangular, wall-surrounded arena of vari-
able size. It has a default size of 800× 600 pixels – robots have a size of 36× 45
pixels. The robot, shown in Figure 1.1, can move around in the arena with con-
stant acceleration and variable velocity (forward and backwards) whilst turn-
ing, shooting and operating the radar simultaneously. A positive velocity is
a forward motion and a negative velocity is backwards, speed is simply the
absolute value of the velocity. The maximum speed of a robot is 8 pixels/turn.

Robocode has a physics model which limits the possible actions of the robots,
e.g. the robot cannot move at full speed while turning. Firing the gun causes
a robot to lose the same amount of energy as the shooting power. The lost
energy is regained by factor of 3 if the bullet hits a target – see Table 1.1 for
some examples. Robocode is turn based, and in each turn every robot is given
a limited amount of time to choose which actions to perform. When all robots
have completed their turn, their actions are performed sequentially. If a ro-
bot exceeds its time limit for a turn, it misses the entire turn. If it exceeds its
time limit 30 times in a round, it is disqualified from the round by Robocode.
This means that a robot’s skills have to be a compromise between computa-
tional complexity and time needed to react sensibly to events. A robot which

The Gameplay 7

Firing power Damage inflicted Energy regained Bullet velocity (pixels/turn)

0.1 0.4 0.3 19.7

1.0 4.0 3.0 17

2.0 10.0 6.0 14

3.0 16.0 9.0 11

Table 1.1: Possible damage, energy gained and bullet velocity given some ex-
ample firing powers.[AN01a]

is overly complex will thus probably lose, because it will spend all its time
deciding reactions and possibly get shot (and killed) in the mean time, and a
really simple robot will act without much consideration, resulting in subop-
timal actions.

Robocode uses a scoring system to determine the winner of a match. The win-
ner is not necessarily the robot surviving most rounds because Robocode also
gives points for e.g. attacking. The rules are as follows[AN01a]:

• Each live robot is given 50 points each time a robot dies.

• The last robot alive is given an additional reward of 10 points for each
dead robot.

• Each point of damage inflicted is rewarded by 1 point.

• Killing an enemy is rewarded additional 20% of total damage inflicted
on that robot.

• Ramming an opponent is rewarded with 2 points per damage inflicted
by the ramming.

• Killing an opponent by ramming it is rewarded additional 30% of the
total damage inflicted on that robot.

The final winner is the robot with most points in total after all rounds have
been fought.

The processing loop used by the Robocode engine to execute each round from
[AN01a] is given below:

• All robots execute their code until taking action

• Time is updated

• All bullets move and check for collisions

• All robots move (heading, acceleration, velocity, distance, in that order)

• All robots perform scans (and collect team messages)

8 The Gameplay

• The battlefield draws

Robocode is based on an event-driven system, where every robot has an event
queue of its own. Events occur e.g. when the robot is hit by a bullet or it scans
another robot. Robots are created by extending the Robot or AdvancedRobot
class. Robots based on the AdvancedRobot Java class are asynchronous,
which means that it is possible to perform actions simultaneously by using
non-blocking methods. AdvancedRobot receives the following events:

• BulletHitEvent. Received when one of the robot’s bullets hits another ro-
bot. It gives information about the opponent’s name and remaining en-
ergy alongwith a Bullet object, which holds the bullet’s heading, owner1,
power, velocity, victim2 and a status flag which tells if the bullet is still
active.

• BulletHitBulletEvent. Received when one of the robot’s bullets hits an-
other bullet and is destroyed. It can return the two bullet objects.

• BulletMissedEvent. Received when one of the robot’s bullets hits a wall
and gives the bullet object.

• HitByBulletEvent. Received upon being hit by a bullet and gives the
name of the shooter along with the bullet’s heading, power and velocity.

• HitRobotEvent. Received upon colliding with another robot and gives
the other robot’s name, energy, bearing and whether the robot was head-
ing toward the other robot.

• HitWallEvent. Received when the robot collides with a wall. It gives the
robot’s angle to the wall.

• ScannedRobotEvent. Received when the radar scans a robot. It gives
the other robot’s name, energy, bearing, distance, heading and velocity.

• WinEvent. Received when the robot wins a round and holds no informa-
tion.

• DeathEvent. Received when the robot dies and holds no information.

• SkippedTurnEvent. Received when the robot has not decided on an ac-
tion within the given time limit of the turn. It holds no information.

• RobotDeathEvent. Received when another robot dies. It holds the name
of the killed robot.

1The robot that fired the bullet.
2The robot that was hit by the bullet, if any.

Robocode Strategies 9

1.2 Robocode Strategies

In battles, strategies are guidelines of how to act in a given situation. Obvi-
ously, a set of strategies would be useful in Robocode, but first a definition of
a strategy is needed:

Definition: A systematic plan of action to reach predefinedgoals.[FS97, Chapter
9]

This very general definition allows the use of partial strategies which describe
only a subset of the possible actions to take. Strategies will be described di-
vided into four categories:

• Percepting. How the robot controls its radar.

• Planning. Deciding long-term actions and goals.

• Moving. Controlling the motion of the robot.

• Targeting and Shooting. When, how powerful and in which direction to
shoot.

A robot might do well in 1-on-1 battles, but for melee3 battles other strategies
are needed. One can imagine that a good strategy in melee combat is to try to
stay out of the way and attract no attention. Then, after the other robots have
killed each other, one could easier kill the last robot because it probably has
sustained a lot of damage. This strategy would not work equally well in 1-on-
1 battles, because the opponent has full energy. Another argument against this
strategy is the scoring system used in Robocode. A battle is not won solely
based on being the last man standing. The amount of damage inflicted and
opponents killed also count.

In the following, various strategies for controlling a robot are presented along
with any apparent pros and cons. This is based on [AN01b], [McC02], [Mar02],
[Owe02] and [Robb].

1.2.1 Percepting

The basic way to scan for opponents is to simply rotate the radar 360 degrees
continuously and remember the positions of all other opponents. However,
since robots are rarely spread evenly over the arena due to fighting, this is
obviously not an optimal strategy. Time is wasted scanning empty parts of the
arena.

3Melee means a battle with more than two robots in the gaming area.

10 Robocode Strategies

Another scanning strategy, alternating direction scanning strategy, is one in which
the robot scans in one direction, and once all other robots are found, the scan-
ning direction is reversed. The idea is that robots tend to fight in small areas
and this can be used to reduce the time spent on searching for opponents.

Especially in 1-on-1 battles a locked scanning strategy where the radar remains
fixed on a single target is very efficient. This can be done by moving the radar
a little back and forth every turn – perhaps selecting scanning direction based
on the desired target’s heading – in order to not lose track of the target. This
would probably not be a good strategy for melee battles because it can often
be a good idea to change target for a while, e.g. if an opponent low on energy
is nearby.

Since there are no events which represent that another robot has fired a bullet,
the radar can be used to guess about this. If an opponent has lost a certain
amount of energy between two scans, it could mean that the opponent has
fired a shot. The shot power can also be estimated based on the amount of
energy lost. Of course, shooting is not the only reason for losing energy, so this
is only a way to make an educated guess.

The Robocode AdvancedRobot has the following methods for controlling
percepting actuators:

• scan. Scans the arena using the radar at its current setting. This is only
rarely needed to be called explicitly, as Robocode calls this for each robot
at each turn.

• setTurnRadarLeft and turnRadarLeft. Turns the radar left.

• setTurnRadarRight and turnRadarRight. Turns the radar right.

• setAdjustRadarForRobotTurn. Enable or disable the locking of the radar
to the base of the robot.

• setAdjustRadarForGunTurn. Enable or disable the locking of the radar
to the gun turret.

In Robocode the set* methods are the non-blocking methods which allow sev-
eral actions to be performed simultaneously. These methods simply add the
actions to a queue, the actions in the queue are executed by using the execute

method.

1.2.2 Planning

Since the primary goal in Robocode is to win by attacking and killing oppon-
ents, a robot must decide which opponent to attack, if it wants to attack at all.
This is most relevant in melee battles, since in 1-on-1 battles this problem is
reduced to determining whether to attack or avoid the opponent.

Robocode Strategies 11

A basic approach is simply to attack the target with the lowest energy or try
to hide if all opponents have higher energy. However, this target may be in
the other end of the arena, thus it may prove to be a poor strategy, because the
robot may have tomove quite far in order to be sure of hitting the target. While
moving, another opponentmay kill the currently selected target. Also, another
robot may become even weaker, causing the robot to select a new target and
begin moving toward it. This may repeat until the robot is killed and it might
never fire a single bullet.

Another approach would be to attack the closest target. However, the closest
target may indeed be the best performing robot in the battle, which might not
be the best target to select.

A third approach would be choosing a compromise between target distance
and target energy. However, finding the right ratio is non-trivial and depends
much on the situation in which the decision must be made.

Robocode provides no methods to aid in planning in any of the robot classes,
contrary to scanning.

1.2.3 Moving

Obviously, staying in the same place is a really bad idea because a sitting duck
is easy to hit.

Moving around the arena in straight lines is also a poor strategy because a robot
will have few problems predicting an opponent’s route, thus it will be easy to
target future positions. Robots moving this way are likely to take many hits
from its opponents.

Circular movement is better than moving in straight lines, but not much. It is
not particularly hard to compute the positions on a circle given a velocity, so
this strategy is not likely to work much better against advanced robots either.

Random movement can be used to confuse robots that try to predict the mov-
ing patterns of other robots. It is not beneficial to achieve complete random
movement, because this makes it hard to follow other robots and the risk of
ramming the walls becomes higher.

Anti-gravity is a general method which exists in many variants. It is imple-
mented in many robots[Robb] and seems to be a simple and elegant solution.
It is used to push the robot away from dangerous areas and attract it to safe or
otherwise advantageous areas. This is very versatile because it can be used in
every situation where movement is required, and it is possible to decide areas
to avoid dynamically during battles through algorithms.

Bullet dodging[Mar02] is a useful ability for a robot to possess in order to be
successful. Apart from not being directly able to detect the firing of bullets,
the radar cannot determine which way an opponent’s gun turret is pointing.
Thus, the path of the guessed bullet cannot be determined. However, since
the firing power influences the loss of energy, the speed of a bullet can be

12 Robocode Strategies

determined. The idea is to draw a circle symbolising a wave front with centre
at the firing opponent’s position at the time of the firing, and then increase the
radius with the speed of the bullet. This way, the robot can ignore the guessed
bullet until the bullet can be close to hitting it and at this point in time make a
sudden, random move.

It is quite easy to prevent a robot from hitting walls, but this can have big
impact on its abilities to dodge bullets etc. Factored wall avoidance[McC02] is an
algorithm designed to keep robots from hitting the arena walls without getting
trapped in a corner or moving away from the desired direction or area.

In 1-on-1 battles, ramming could be a good supplement to shooting for a robot
that has more energy than its opponent, because the opponent will be killed
first. In melee battles this is a less efficient strategy, because the robot is not
guaranteed to remain in the lead. In both 1-on-1 and melee battles using ram-
ming can cause the attacking robot to be killed.

The Robocode AdvancedRobot has the following methods for controlling
movement actuators:

• setAhead and ahead. Move a given distance ahead.

• setBack and back. Move a given distance back.

• setMaxTurnRate. Limit the rate at which the robot turns.

• setMaxVelocity. Limit the speed at which the robot moves.

• setStop and stop. Stop any movement and remember what the robot
was doing.

• setResume and resume. Resume the movement stopped with setStop

or stop.

• setTurnLeft and turnLeft. Turn the robot left.

• setTurnRight and turnRight. Turn the robot right.

1.2.4 Targeting and Shooting

The task of targeting is to calculate the angle to rotate the gun turret so that it
points in the correct direction to hit an enemy robot. The major complication is
that it is not sufficient to merely point the gun turret in the immediate direction
of that enemy. The bullet must travel a distance to reach the target. During the
flight time of the bullet, the enemy could have moved away from its original
position. A further complication is the fact that bullets have different velocities
according to the shot power.

A simple strategy is to scan for opponents and immediately shoot in an op-
ponent’s direction with full power once one is found. This obviously does not
work very well with moving robots.

Summary 13

Fire away is another simple strategy in which a robot shoots in all directions
but only with a low power. The idea is that at least some of the shots will hit
an opponent.

Move-in move-out is a general strategy where a robot finds a target, quickly
moves close to it and shoots with maximum power. Afterwards, it quickly
moves to a safe distance. This would probably work quite well in 1-on-1
battles, since big parts of the arena will be empty. It may not, however, be
trivial to run away from an opponent. This strategy is not always possible to
use in melee combats, because there may be nowhere to hide. This caveat is
common to all evasive strategies.

A more advanced strategy might be to try to predict the target’s future po-
sitions from the heading and velocity returned from the radar scan. If the
opponent moves in straight lines, it is fairly easy to determine how to shoot.
Pattern matching can recognise robots who exhibit a particular behaviour such
as following the arena walls, hiding in corners or moving in circles. Pattern
matching can also be used to deduce the current strategy used by opponents
which can aid in choosing which strategies to use. This also enables a robot
to set shooting power based on complex factors such as confidence in that the
shot will hit.

The Robocode AdvancedRobot has the following methods for controlling
shooting actuators:

• fire and fireBullet. Shoots a bullet if the gun is cold. fireBullet returns a
Bullet object for the fired bullet.

• setTurnGunLeft and turnGunLeft. Turns the gun left.

• setTurnGunRight and turnGunRight. Turns the gun right.

• setAdjustGunForRobotTurn. Enable or disable the locking of the gun to
the base of the robot.

1.3 Summary

In this chapter Robocode has been introduced as a game platform, relevant
details of the game rules have been discussed, and an overview of a number
of strategies and methods has been given. This overview has shown that most
strategies have both advantages and disadvantages, and typically these disad-
vantages depend highly on the game situation. The chapter has also shown
that within Robocode there are problems for which it is hard to specify an al-
gorithm or method which defines the desired solution.

Chapter 2

Previous Work

Although Robocodewas originally intended as a framework for learning Java,
a lot of skilled developers have shown interest in the system resulting in a
range of advanced robots. Through the study of existing robots, this chapter
unveils advanced methods which have proved effective and provide inspira-
tion for the design of future robots.

Since the focus of the project is on machine learning, this chapter will start by
defining the class of methods covered by the term “machine learning”. Three
existing methods, previously used in Robocode robots and complying to this
definition, are identified and discussed: Neural network targeting, symbolic
pattern matching and genetic programming.

2.1 Definition of Machine Learning

ML is intuitively associated with systems which are not restricted by their ori-
ginal programming and automatically evolve over time. This intuition is cap-
tured in the definition from [FOL]:

Definition: Machine learning is the ability of a machine to improve its per-
formance based on previous results.

To further formalise the terms “improve performance” and “previous results”,
the definition of learning from [Mit97, p. 2] is adopted:

Definition: A computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if its perform-
ance at tasks in T, as measured by P, improves with experience E.

In the context of Robocode, the task will generally be to compete against other
robots, and the performance measure P could be the percentage of games won or
score achieved.

15

16 Pattern Matching

Consider as an example a robot that predicts the future position of its enemy by
employing the pattern matching methods to be discussed in the next section.
In this case, the task, T1, is to hit the enemy, the performance measure, P1,
is the percentage of successful hits, and the experience, E1, will be defined
by previous enemy movement patterns. If the robot successfully improves P1
based on this experience, it is considered to learn.

On the other hand, consider a robot which always assumes that its enemy
moves linearly and tries to predict future positions based on a linear target
prediction mechanism. Because this robot does not base its actions on any
experience, E, it does not learn anything with respect to T1 and P1. Similar
arguments apply to many other targeting and movement techniques, which
consequently are not considered here.

2.2 Pattern Matching

As the examples in the previous section suggest, robots which employ pattern
matching for targeting are covered by the definition of learning. Two interest-
ing approaches are mentioned in [Robb], namely neural network targeting and
symbolic pattern matching, where two example implementations include the ro-
bots ScruchiPu and NanoLauLectrik, respectively.

These are chosen for investigation because they perform relatively well, e.g.
they have both achieved a top 3 position in the Robocode Outpost league
[Robb, Sections ScruchiPu and NanoLauLectrik]. Furthermore they are some
of the first robots to apply the techniques in focus, and are therefore used as
the basis for other robots employing similar techniques. The following sec-
tions build upon the brief descriptions in [Robb, Sections NeuralTargeting and
SymbolicPatternMatcher] as well as the NanoLauLectrik source code avail-
able from [Roba].

From a high level perspective, neural network targeting and symbolic pattern
matching both strive to approximate the following function:

f : Xn × T → X (2.1)

X is the set of all possible samples, each of which represents the enemy’s state
(e.g. position) at a certain time, and T is the set of possible time instances.
Given a sequence, s = x1, x2, · · · , xn, of recently observed enemy states and a
future time, t, the expected future enemy state at this time is given by f (s, t) =
xt.

2.2.1 Neural Network Targeting

ScruchiPu bases its approximation of Equation 2.1 on a neural network; refer
to Figure 8.1 for a general introduction to this topic. In this particular solution,

Pattern Matching 17

..

.
..
.

..

.
..
.

..

.
..
.

h1

v1

hN

vN vN+1

hN+1

v2

h2 hk

v2

vN+2

hN+2

vN+k−1

hN+k−1 hN+k

vN+k

· · ·

sk = (h, v)N+1 , (h, v)N+2 , · · · , (h, v)N+k

Figure 2.1: Construction of sk usingmultiple network feed-forward cycles. The
gray neurons represent the output layer, and are used as the last two inputs in
the succeeding cycle.

the sequence s of observed enemy positions is composed of pairs (h, v) of en-
emy heading and velocity: s = (h, v)1 , (h, v)2 , · · · , (h, v)n.

The neural network is designed with one hidden layer, and 2 · n input neur-
ons are used to represent the sequence s. Two output neurons represent the
expected (h, v)n+1 pair.

Observe that the described network does not take any time parameter into
account. This means that each of the samples in s must be sampled with the
same delay, ∆t, and that the output always represents the expected velocity
and heading at time ∆t after the sampling of the input sequence. In order to
derive the enemy’s position at at an arbitrary point in time, t, a sequence sk =
(h, v)N+1 , · · · (h, v)N+k must be constructed by performing k = t/∆t network
feed-forward cycles. For instance the (h, v)N+2 pair is produced by inputting
(h, v)2 · · · (h, v)N+1 to the network; see Figure 11.3 for the general approach.

Finally the actual future Cartesian coordinates of the enemymust be construc-
ted from sk. This will require the assumption of linear movement between each
sample, but obviously the error induced by this assumption approaches 0 as ∆t
approaches 0. As an example, consider deriving from sk the expected increase
in Cartesian coordinates (∆x,∆y) between samples (h, v)i and (h, v)i+1, given
that the velocity is measured in pixels/second and the delay, ∆t is measured
in seconds:

∆x = vi · ∆t · sin (hi)
∆y = vi · ∆t · cos (hi)

Note that the heading is measured positive clockwise from the y-axis, hence
this arrangement of the trigonometric functions. Following this approach, the
enemy’s expected path can easily be constructed from its initial position by
vector addition.

18 Pattern Matching

Further details on network topology, activation functions, training algorithms
and methods (online/offline) are not given by the authors of ScruchiPu, ex-
cept that a low momentum and low learning rate are mentioned to give the
best results.

2.2.2 Symbolic Pattern Matching

In symbolic pattern matching the enemy robot’s movement patterns are expli-
citly sampled and preserved in a list referred to as the history h = s1, s2 · · · sM,
the size of which increases linearly with time. This is in contrast to neural
network targeting discussed above, where previous experience is implicitly
encoded in a constant number of network weights (although a recent history
is also maintained).

When anticipating future locations of an enemy robot, the following actions
are generally taken:

1. Find a sequence in h matching the recent n enemy samples, and let p
mark the end position of the match. If no match is found (or only the
trivial match at the end of the history is found) then abort. Relating to
Equation 2.1, the recent n samples correspond to sequence s on which
the prediction should be based.

2. Replay the history from position p for a duration corresponding to the
time it takes an emerging bullet to reach the target robot. Again, this
time interval corresponds to t given in Equation 2.1. The history sample
at the end of replay will be the anticipated enemy position after time t.

The questions of how to actually represent the history and perform the match-
ing are of vital importance, and the following considers these issues in relation
to the NanoLauLectrik robot.

NanoLauLectrikmaintains two separate histories for the same robot: One
for matching, hm, and one for reconstructing, hc. Matching is based exclusively
on velocity patterns, so each sample in hm simply represents the enemy’s velo-
city ([−8; 8]) at the sample time. A velocity history may appear insufficient at
first, as it does not explicitly capture changes in direction (except for the sign
which captures forward and backward movement). However a change in dir-
ection is often reflected in the velocity, because a robot cannot turn while mov-
ing at full speed. As a technical detail, the velocity is represented by a symbol
(character) and not a real number; this allows the matching to be based on
Java’s regular expression engine, hence the name symbolic pattern matching.

When a matching position p in hm is found, the enemy’s expected position
after further t samples can be constructed by replaying sample p through p + t

Genetic Programming 19

in the second history, hc. To allow this reconstruction, samples in hc could for
instance contain the enemy’s horizontal and vertical velocity1.

2.2.3 Nondeterminism

Common to both pattern matching methods described above is the assump-
tion of deterministic movement. This assumption holds for many simple ro-
bots, e.g those included in the Robocode sample package. But whenever a
robot exhibits nondeterministic movement (e.g by randomly choosing its dir-
ection) the movement function will not surrender itself to approximation, and
the pattern matching fails utterly. Some robots which employ pattern match-
ing therefore disengage the matching when they discover that the frequency
of failed predictions exceeds a given threshold. Note however that neural net-
works can handle some degree of nondeterminism, as they are more robust to
noise than symbolic pattern matching, which requires an exact history match.

2.3 Genetic Programming

In the context of Robocode, genetic programming involves automatic genera-
tion of robot controlling programs. Appendix C gives an introduction to the
area of genetic programming.

In the terms of learning, set forth in Section 2.1, the goal (or task), T, could be
to evolve a robot that achieves the highest performance, P, measured by the
score assigned to the robot by the Robocode system after a battle. Experience,
E, could be defined by the success rates (i.e. scores) and genome strings of
robots from earlier generations.

An attempt at applying genetic programming to Robocode robots is docu-
mented in [Eis03]. This section outlines that approach and presents the main
results from the paper.

2.3.1 Design Outline

A small language, TableRex, is used for evolving robots and is interpreted at
runtime to control the Robocode robots. In the example TableRex program
shown in Table 2.1, each row defines an action constituted by a function and
two inputs (parameters) and one output. For instance row 6 evaluates the
boolean expression “value at line 4 less than 90” and stores the result in the last
column of the row (1 for true). A total of 16 functions are available, providing
basic arithmetic and logic operations as well as a few operations convenient in
the context of Robocode – most importantly a function to control the robot’s

1NanoLauLectrik actually stores only the (accumulated) vertical velocity in hc, but by
Pythagoras’s theorem the horizontal velocity can be derived from the vertical velocity and the
absolute velocity stored in hm.

20 Genetic Programming

Function Input 1 Input 2 Output

1. Random ignore ignore 0,87

2. Divide Const_1 Const_2 0,5

3. Greater Than Line 1 Line 2 1

4. Normalize Angle Enemy bearing ignore -50

5. Absolute Value Line 4 ignore 50

6. Less Than Line 4 Const_90 1

7. And Line 6 Line 3 1

8. Multiply Const_10 Const_10 100

9. Less Than Enemy distance Line 8 0

10. And Line 9 Line 7 0

11. Multiply Line 10 Line 4 0

12 Output Turn gun left Line 11 0

Table 2.1: An example TableRex program from [Eis03, Figure 1]. Note that
even though the fourth column actually represents function results; it can also
be used as an input – its value would be the result from the previous run of
the entire program.

actuators (as shown in the last row of the table). Inputs may reference game
parameters such as enemy distance in line 9.

Three TableRex design criteria are mentioned:

1. Support of an efficient interpreter, giving fast evolution of programs.

2. Programs should be encodable as a fixed-length genome which enables
easy cross-over.

3. Output of ordered sequences of actuator control commands should be
possible as robots typically require multiple sequential actions to work
satisfactory.

TableRex programs are incorporated into Robocode robots using a subsump-
tion architecture, as further discussed in Chapter 3. This means that a TableRex
program is associated with each event that the robot should respond to, and
that the programs are arranged into hierarchies of importance. Further details
of the architecture are not given by the author.

2.3.2 Results

The evolved robots have been tested against the sample robots as well as the
non-adapting SquigBot from the showcase category [Roba] in which robots
have been rated as exceptional. A total of four test settings were considered
by adjusting two variables: Number of adversaries (one or multiple) and starting
position (fixed or random initial map positions).

Considerations 21

In the simplest setup, one adversary and fixed starting position, robotswere evolved
which convincingly beat SquigBot as well as the sample robots. But when
using multiple starting positions, the success rate against SquigBot dropped to
50% and longer evolution was required. The increased difficulty in this config-
uration can be explained by the need to compensate for random “bad” initial
placements (e.g. a corner of the battlefield).

When using multiple adversaries and fixed starting positions, robots could no
longer evolve to avoid the adversary’s firing pattern, and only robots from
the sample collection could be beaten. The final setup, multiple adversaries and
random starting positions never succeeded in evolving any competitive robots
because of unacceptably long training delays (estimated 130 hours on a 1 GHz
Pentium 3). Hence the problem of limited processing resources should be kept
in mind.

As a general problem, robots were rarely evolved to take advantage of their
gun. Several possible explanations for this are given, the most feasible be-
ing that early generation robots that attempted to fire were removed from the
population because they typically missed their target and thus lost energy fast.
This issue could be a subject for improvement, e.g using neural networks for
targeting.

2.4 Considerations

Based on the definition of learning, twomethods for targeting and onemethod
for general control of robots have been discussed. Although some variations of
the pattern matching methods have been implemented, the interest in apply-
ing advanced ML to Robocode is not overwhelming. One explanation could
be that the simulation environment in Robocode is not too difficult for humans
to fully understand (the only obstacles are the walls, there is a limited number
of actuators and little nondeterminism etc.), making the explicit expression of
behaviour code possible. Consequently many traditional “hand coded” tech-
niques have proven very effective, and in addition require less development
time to achieve good results.

Chapter 3

Agent Architectures

In this chapter, a robot is considered in the more general perspective as an
agent and several architectures for agents are explored. This is done in order
to enhance modularity so that the general problem of building a robot can be
split into smaller, more manageable problems. In addition, architectures as a
concept are employed so that standard terminology can be used. This makes
it possible to draw on previous experience with agents, and makes it easier to
communicate the structure of the robot.

First agents are defined, followed by an analysis of three existing classes of ar-
chitectures— leading to a summary of the pros and cons of each of the classes.

3.1 Definitions

The concept of agents has become an important subject in computer science
and is usually divided into three major categories: Theory, Architecture and
Languages. The theory deals with what one could call the essence of agency, or
in specific terms: A definition of an autonomous agent.

The pursuit of defining autonomous agents has given rise to many discussions
throughout the scientific community, and it could seem beneficial to display
the central aspects of these discussions here as they influence the choice of ar-
chitecture for Aalbot. But for the purpose of this report, and to maintain the
focus of autonomous agents in computer games, we simply adopt the follow-
ing definition, presented in [SA96]:

Definition: An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time, in
pursuit of its own agenda and so as to affect what it senses in the future.

The definition serves the purpose of being both generic and precise, while
leaving the choice of architecture open. To grasp the precise meaning of this
definition, the following keywords are elaborated:

23

24 Deliberative Architectures

• Autonomous. An agent is considered autonomous when able to operate
without direct intervention from humans, and it has some control over
its actions and internal state.

• System. The collection of software or hardware entities that the agent is
comprised of.

• Environment. The boundary that the agent operateswithin, and the only
thing that the agent is able to sense and manipulate, e.g. the Internet or
the Robocode environment. The agent itself is a part of the environment.

• Senses. Input to the agent. Various agents sense in various manners, e.g.
through sensors attached to the agent such as the radar on a Robocode
robot.

• Acts. The means for the agent to affect its environment.

• Agenda. The goal of an agent. Can be comprised of wishes, desires or
some form of a plan. Some agendas are implicitly defined by the mere
structure of the agent.

Agent architectures can be viewed as software or hardware engineering mod-
els. They dealwith the design of systems that satisfy a definition of an autonom-
ous agent. As the keen reader observes, different agent definitions yield dif-
ferent architectures.

The research on languages regarding autonomous agents strives to define pro-
gramming languages that specifically support the programming of agents.
This is done by providing primitives that allow a programmer to express agents
as software systems using the principles defined by agent theorists. The sub-
ject of autonomous agent languages will not be revisited in this report.

The analysis will be conducted separately on two traditional classes of agent
architectures, namely deliberative and reactive architectures. Finally a short de-
scription of a set of recent hybrid architectures, combining the two traditional
architectures, will be presented.

3.2 Deliberative Architectures

The deliberative agent architectures consider an agent as a particular type of
knowledge based system, as knowledge gathered throughout the lifetime of
an agent is used to pursue its agenda. The architectures in this class maintains
a symbolic world model explicitly representedwithin the agent. The symbolic
world model differs from the definition of environment in the previous section
as the agent needs not be an explicit part of it, nor does the world model have
to encompass the whole environment. Nevertheless, one could argue that an
agent is always implicitly a part of such a world model since all observations
are made by the agent itself, and thus the model becomes relative to the agent.

Deliberative Architectures 25

Deliberative agents make decisions by reasoning about, and symbolic manip-
ulation of, the aforementioned world model as depicted in Figure 3.1. This
architecture is often referred to as symbolic AI, as the symbolic world model
makes way for a great variety of intelligent decision-making.

Figure 3.1: A deliberative architecture for a Robocode robot adopted from the
Robocup CMUnited99 Team Member Agent Architecture [Bea00]. The agent
maintains a model of the environment in the world state component, which is
used to choose the action of the robot.

In order to grasp the symbolic AI paradigm consider a fly as an autonomous
agent using a deliberative architecture as controller. The fly has an internal
representation of the world it resides in, for now be it a kitchen, with every
object in the kitchen mapped along with the distance to the walls. The fly
also needs to be aware of its own position in the kitchen. The fly has sensors
fitted onto it, i.e. eyes and some sort of scent scanner, in order to maintain this
internal model of the world.

If the fly senses a delicious eatable substance in the kitchen and at approxim-
ately the same time sees a threat, e.g. a man with a newspaper, the fly has
to perform logical reasoning to determine its future behaviour. This could be
to evaluate the distance to the food and the threat relative to itself, and per-
haps even consider if it could grab some of the food on the getaway from the
newspaper.

Finally the fly could use some sort of memory to decide if the eatable sub-
stance is really nutritious enough to risk its life for, or if the person holding the
newspaper is a poor hitter. All of these considerations have to be performed
within a time boundary for the fly to survive, at the same time maintaining its
internal representation of the kitchen and its objects.

Some unresolved issues regarding deliberative agents remain. Especially the
task of creating an accurate symbolicworldmodel of the environment in which
the agent resides has proven difficult. The difficulties have revolved around
keeping this model simple enough for efficient knowledge extraction, while
still being adequate for an agent to make intelligent decisions within some
time boundary[Bea00].

26 Reactive Architectures

3.3 Reactive Architectures

The problems surrounding the deliberative architectures, as explained in the
previous section, have led to the development of alternative architectures.
These alternatives can roughly be divided into purely reactive architectures
and hybrid architectures (i.e. between deliberative and reactive architectures
[WJ95]). The reactive architectures are characterised by the lack of a world
statemodel. In 1985 RodneyBrooks, an ardent critic of the symbolic AI paradigm,
presented a reactive architecture, the so called subsumption architecture. This
architecture has many promising features, yet many modifications and im-
provements have materialised since it was first introduced.

The subsumption architecture rests on two key ideas originating from Brooks.

• The real intelligence is situated within the world itself, not in disembod-
ied systems.

• Intelligent behaviour arises as a result of an agent’s interaction with its
environment. It is not an innate, isolated property.

These two ideas outline the idea that intelligent behaviour can be achieved
without maintaining an explicit model of the environment of an agent and
without the abstract reasoning as presented in the symbolic AI paradigm.

The subsumption architecture is a vertically layered architecture, with each
layer transforming input to output, as depicted in Figure 3.2. The input to an
agent built upon this architecture is typically produced by sensors, and the
output most often activates an actuator. Upper layers have precedence over
lower layers and subsumes the output of lower layers, thus the name subsump-
tion architecture.

Figure 3.2: The layered approach. Higher positioned layers subsumes the out-
put of lower layers.

To exemplify the subsumption architecture consider again the fly. This fly now
has two layers, a danger management layer and a food management layer.
These two layers react to sensor input from the fly, the exact specification of
the sensors is not relevant for this discussion. When the danger management

Reactive Architectures 27

layer receives input the fly is more inclined to move fast and away from its
current location. When the fly receives input from its food management layer
the fly is inclined to move towards the stimulant. In case a fly receives strong
inputs in both layers at approximately the same time the fly has to perform
intelligently to survive (or to get food one might say). A vital property for
the fly to survive is that the danger management layer is able to subsume the
output of other layers. If we arrange for the food management layer to be
below the danger management layer, the possibility of the fly escaping instead
of being smashed while eating certainly exist. And we might say that the fly
made an intelligent choice by escaping.

As Brooks has demonstrated [WJ95], adding more layers to specific agents will
allow for intelligent behaviour, without suffering from the downside of main-
taining a symbolic model of the world of the agent. Still the architecture suf-
fers from a couple of drawbacks: The subsumption architecture does not allow
for any shared memory or other communication between the layers, making
it impossible for the layers to cooperate in order to achieve a common goal.
To illustrate this, consider Figure 3.3 where the two layers’ considerations are
depicted.

Figure 3.3: The subsumption architecture does not allow for two layers to
agree on a best common output.

The layers determine their output, marked with bold lines. The dashed lines
indicate acceptable but not optimal output for each layer, the layers do not
agree on the best option. The output C would be acceptable by both layers, but
it is not chosen. This is due to the upper layers subsuming the entire output of
lower layers disabling any two layers from cooperating and outputting a best
common result.

Critics further argue that reactive architectures can only perform successfully
under specific circumstances, such as [WJ95]:

• Sensor stimuli for unambiguously determining the behaviour of an agent
is always sufficiently present.

• No global task has to be reasoned about by the agent, e.g. no global
strategy.

28 Reactive Architectures

Figure 3.4: Fine-grained subsumption. Two behaviours weight possible ac-
tions. The circles represent the weighting of possible actions. Black is a max-
imum weight, white is the minimal weight; grey-scales represent intermediate
values. The circles within the behaviours represent the weighting of the ac-
tions from the behaviour. The circles outside the behaviour is the compromise
of two behaviours. The selected action is simply the one with highest weight,
in this case the third from the left. [Ros89]

• The goals and desires of an agent can be implicitly defined by a ranking
order.

Interesting alterations have been proposed to alleviate these undesirable prop-
erties of the subsumption architecture, themost promising one being fine grained
subsumption.

The fine grained subsumption, proposed in [Ros89], aims to resolve the lack of
communication possibilities between layers in the subsumption architecture.
This is achieved by fragmenting the layers into smaller decision-making units.
Each unit has the task of transforming input values to intermediate output
values, thus the connections of a decision-making unit define its ultimate role
in the system. Each layer represent a certain behaviour of the agent Between
each pair of neighbouring layers is a set of intermediate units through which
the two layers communicate to find an optimal solution. The fine grained ap-
proach allows for distinguishing between behaviours and commands, result-
ing in behaviours with access to the internal state of other behaviours, and
commands with the basic limitations adhering to the initial subsumption ar-
chitecture. On Figure 3.4 the cooperation of two behaviours using fine-grained
subsumption is shown. This architecture enables an agent to pursue a global
strategy, thus removing one necessary circumstance, namely that of no global
task to be performed by the agent.

Hybrid Architectures 29

3.4 Hybrid Architectures

In the field of research on agent architectures it has been argued that neither a
pure deliberative nor a pure subsumption architecture is sufficient to produce
highly intelligent agents[WJ95, p. 23]. Instead a combination of these two
classical architectures with other alternative architectures has been proposed.
The approach of hybrid architectures seems viable, as the limitations of the two
other classes of architectures can be alleviated. E.g. someminimal model of the
environment could enhance the performance of reactive agents. The research
on hybrid architectures is only very recent and thus no deep theory has yet
materialised, resulting in ad hoc approaches to highly specialised applications
[WJ95].

Chapter 4

Analysis Results

Based on the three previous chapters, the preliminary goal from the introduc-
tion of this report will be elaborated and narrowed into a concrete goal and
success criteria for Aalbot.

The concrete goal of this project is to:

Design and implement a robot using variousmachine learningmeth-
ods that in 800× 600 pixel large arenas scorewell in combat against
3 opponents. The measurable success criteria will be the score
achieved in combats against the robot Walls from the sample ro-
bot set, and Squigbot and Peryton from the show-case section
of the Robocode repository. Aalbot must not be trained specifically
for battling these 3 robots. It must be able to achieve at least 2nd
place in a battle comprised of 10 rounds.

Based on the analysis of Robocode, it is chosen to design Aalbot to be used in
melee battles with a fixed number of opponents. Melee battles are chosen be-
cause many interesting problems arise in melee battles, which are not present
in 1-on-1 battles. By choosing melee battles, Aalbot will also have to do well
in 1-on-1 battles, because otherwise it cannot be the last surviving robot.

It is also chosen to use a fixed arena size of 800 × 600 pixels – partly because
this is the default in Robocode but also because the greatest distance in such
an arena is

√
8002 × 6002 = 1000 pixels which is less than the radar scanning

distance limit. Choosing a fixed arena size removes a further complication for
the machine learning methods, as Aalbot does not have to adapt to different
arena sizes. Battles of 4 robots in total are chosen because this seems to leave
enough space for the robots to move around without leaving vast areas of the
arena empty, as well of ensuring that Aalbot does not have to adapt to battles
with a variable number of starting robots.

To ensure that Aalbot is able to adapt to enemies and uses general strategies
not tailored to just one type of opponent, it is essential that it is not trained
with the robots used for evaluating the results. The three opponents are chosen

31

32

to be the Wall robot from the sample package and Squigbot and Peryton
from the show-case section of the Robocode repository. The latter two robots
are considered to be “exceptional”, and it can therefore be assumed that if the
robot beats them, it must be good.

Based on these decisions, it is anticipated that Aalbot will be a highly efficient
robot which will adapt to its opponents because of the machine learning in-
volved. In Part III, the results achieved with Aalbot will be evaluated.

Part II

Design

33

Chapter 5

Aalbot Architecture

In Chapter 3 it was shown that although there exists different agent architec-
tures, the deliberative and reactive architectures have known limitations. The
pure deliberative architectures have some unresolved issues regarding sym-
bolic representation of the agent’s environment. Although the pure reactive
architectures were developed to avoid some of the problems with the deliber-
ative architectures, they also have some problems: the reactive subsumption
architecture does not allow for any shared memory or other form of coopera-
tion between the layers. Thus making it impossible for the layers to cooperate
and choose the most optimal action for all the layers. Fine grained subsump-
tion attempts to alleviate this by dividing the layers into smaller units that
are able to communicate between layers, making it possible for the agent to
take the best overall action. As mentioned in Chapter 3 hybrid architecture is
an architecture that is neither pure reactive nor pure deliberative, but instead
something in between the two; taking advantage of both extremes.

This leads to the design of the hybrid architecture to be used in Aalbot, which
is intended to suit the Robocode framework. In the following, the considera-
tions behind this are elaborated.

5.1 Structure

The designed architecture, shown in Figure 5.1, is based on three components:
a world state component, a subsumption layers component and an arbitrator
component. The architecture has two types of flow: data flow and wish flow.
The data flow carries sensor input to the layers, data from the world state
component to the layers and actions from the arbitrator to the actuators. The
wish-flow is a special kind of flow between each layer in the architecture, from
the top layer to the arbitrator and from the layers to the world state compon-
ent. The layers create a wish list for the arbitrator to convert into actions. This
wish list is carried by the wish flow.

There are two types of wishes, actuation wishes and abstract wishes. Actuation
wishes are simple requests that map directly to actuator activations, i.e. they

35

36 World State Component

Figure 5.1: The overall structure of the chosen architecture. For each layer x,
m(x) is the number of modules in that layer.

are fulfilled by the arbitrator, e.g. “move forward 30 pixels” or “turn gun 30
degrees clockwise”. Abstract wishes are a higher level of requests, that do not
map directly into simple actuator activations, i.e. “move to (x, y) when con-
venient” or “add enemy e to world state map of enemies”. To fulfill a wish is
simply to remove the wish from the wish list and to perform some action in an
attempt to make the wish come true. For the arbitrator to fulfill an actuation
wish is simply to translate the wish into an actuator activation and issue it.
Abstract wishes can be fulfilled by modules and the world state component.
Abstract wishes do not necessarily result in actuator activations, but are in-
stead included in somemodel used by the fulfilling module or component. An
example of this could be an abstract wish on the form “attack enemy e”. A ful-
filling module could then perform the actual job of aiming and firing at enemy
e, e.g. by issuing actuation wishes “turn gun 10 degrees counter-clockwise”
and “fire gun with power 3”.

5.2 World State Component

The world state component is a shared memory for the layers. At the begin-
ning of each turn the world state data are sent to Layer 1. The layer is able to
alter theworld state by sending an abstract wishwith the desired change to the

Subsumption Layers Component 37

Figure 5.2: A closer look at a layer showing the flow between modules inside
layer i, for all 1 < i < n. Layer 1 does not receive any wish flow, as it starts
with an empty wish list. Layer n does not send a wish list to the next layer,
instead it sends it to the arbitrator component.

world state component. The world state component then fulfills the abstract
wish by updating the world state according to the wish. The world state data
are then sent to Layer 2, which has the same ability as Layer 1. This continues
until layer n is finished. I.e all layers are initiated in each turn.

5.3 Subsumption Layers Component

The n subsumption layers build up a wish list for the arbitrator to manifest
into actuator activations. The first layer starts with an empty wish list. Each
layer is able to alter the wish list it receives as input, by adding new wishes
and removing wishes from underlying layers. Abstract wishes are meant to be
fulfilled by modules in overlying layers, i.e. removed from the wish list and
taken into consideration when the fulfilling module makes its wishes. Thus
when the wish list reaches the arbitrator it should not contain any abstract
wishes, if it does then these are simply ignored.

Each layer consists of a arbitrary number of modules. A module has access to
the world state data, sensor input sent to the layer and the wish list received
from the underlying layer. The operation of each layer is simply the execution
of eachmodule in the layer. When everymodule in a layer has finished execut-
ing, the layer sends the wish list to the next layer and a world state update to
the world state component. This is shown in Figure 5.2. An important point is
that the architecture allows for parallel execution of the modules in each layer,
as the modules can execute independently.

5.4 Arbitrator Component

The arbitrator component receives its input from the top layer. The duty of this
component is to resolve possible conflicts in the wish list, and to transform

38 Design Considerations

the wish list into actuator activations. The arbitrator has to be smart, i.e. it
has to know how to combine several wishes into one consistent action. If the
arbitrator is not able to come to a compromise, it can prioritise wishes based
on which layer they originated from.

5.5 Design Considerations

The architecture is designed to fit the specific characteristics of the Robocode
game. Recall from Chapter 3 that in Robocode a robot is given the same
amount of time each turn, and thus the only key element is to issue the ac-
tions before the end of the turn. Thus in order to maximise the potential of a
robot, it is best to spend an amount of time very close to the maximum at each
turn before issuing any action, so that the robot has the most time to ponder
its current situation. This is reflected through the design of the architecture,
where each turn activates all modules in all cases and therefore a turn is es-
timated to spend about the same amount of time. In other words, there are
no “quick” or specific “slow” decisions, where the robot is significantly faster
or slower at deciding its actions by preventing some modules from running.
This is a clear difference between Aalbot architecture and other hybrid archi-
tectures, where “shortcuts” are often used to enable reflex-like decisions by the
robot [WJ95, p. 23-25], which is clearly not an issue considering the turn based
structure in Robocode.

The Aalbot architecture is designed to avoid the common problems with pure
deliberative and reactive architectures. The architecture contains a shared
memory, the world state component, as the deliberative architectures — how-
ever modules need not use this component, making them reactive. The world
state is updated by the modules in the subsumption layers, which makes it
versatile. Each module receives the direct, uninterpreted sensor input at each
turn, as in the reactive architectures.

Chapter 6

Component Design

In Chapter 5 several components for the Aalbot robot were introduced. In this
chapter the design of the world state component and arbitrator component is
presented, as used in the implementation of Aalbot. The subsumption layers
component is composed of a number of modules. To avoid clutter these are
introduced later, in Chapter 7. The design of the world state component and
arbitrator component is introduced to give the necessary overview needed to
understand how Aalbot works.

6.1 World State Component

The world state component is the shared memory for the modules in the sub-
sumption layers component. There are twoways for modules to communicate,
one way is to use wishes that can be fulfilled by overlying modules, the other
way is through the world state component. The modules maintain a model of
Aalbot’s environment in the world state component, which will be explained
in the following.

6.1.1 Table of Enemy Information

Aalbot needs to keep information of the enemy robots in the arena. These data
are kept in a table of enemy information. The table is indexed by a unique
robot identifier. For each robot, e, on the battlefield the following fields exist in
the table:

• Position. The (x, y) coordinates of e at the time e was scanned.

• Energy. The energy of e at time of scan.

• Heading. The direction that e was facing at time of scan.

• Velocity. The velocity of e at time of scan.

39

40 World State Component

• Time stamp. The time at which the information was last updated, i.e.
time of last radar scan of e.

6.1.2 Fading Memory Maps

The world state component uses the concept fading memory map, introduced
in this section. Aalbot uses two kinds of these fading memory maps. A more
specific description is given later of the two fading memory maps. A fading
memorymap consists of a map of points, which can be placed with pixel preci-
sion corresponding to the Robocode battlefield. The points can be used to hold
any kind of information, for instance gravity points for the movement module
or enemy positions. Each point is tagged with some data and a time stamp
describing the time at which the point was placed on the map. This stamp is
used to degrade validity of the information contained within the point.

The rationale behind the fading memory is that it reflects the fact that the
world state changes over time. Information gathered about the world is likely
to get obsolete after a certain amount of time. The more recent an observation
is, the more it can be trusted to be precise. It also helps to keep the model of
the robot simple and the space cost for each turn from becoming a monotonic-
ally increasing function over time. The worlds state component maintains the
fading memory maps.

Fading Memory Anti-gravity Movement Map

The fading memory anti-gravity movement map is a map used by the move-
ment module described in Subsection 7.4.1. Its functionality in the world state
component is limited; it is only used to store gravity points.

Fading Memory Target Map

The target map, T, consists of a set of slots, where each slot represents a non-
overlapping area of the arena. Each slot holds a set of pairs (r, p) where r is a
unique robot identifier, and p ∈ [0; 1] represents the probability that the robot
identified by r is in the area represented by the slot. The sum of probabilities
for each robot r′ over all slots where there exists a pair (r′ , p) is 1 if the robot r′

is in the arena or 0 if it is not. This is referred to as the summation property in
the following.

Once a robot r is scanned by the radar in an area represented by slot, S ∈ T,
that slot has any previous (r, p) pair replaced with (r, 1). And for each slot
W ∈ T, where W 6= S, any (r, p) pair is removed from W, if present. This is
the situation where the position of robot r is known with absolute precision,
and there is only one slot with a probability pair (r, p). Figure 6.1 a) shows this
situation.

World State Component 41

a) b)

Figure 6.1: In a), Aalbot, identified by a scans a robot r and updates its fading
memory target map. Each square between dotted lines represent a slot, white
squares indicate zero probability of a robot in this area, black squares indicate
a probability of 1 that this slot holds a robot. Grey squares represent values
between 0 and 1. The radar cone of Aalbot is shown as the lines originating
from a. In b), the Aalbot and robot r are depicted in another situation. Aalbot
has moved its radar so it does not scan r in this turn. However Aalbot updates
its target map to reflect the new possible positions of r. In the mean time r has
also moved from one slot to another.

For each turn when a robot r is not scanned by the radar, the target map T is
updated to reflect the new probabilities of the whereabouts of robot r. This is
done in such a manner that the summation property holds for r. This is shown
in Figure 6.1 b). The updating of T is done using vr and hr which are velocity
and heading of the robot r retrieved from the table of enemy information. The
probability of r is moved in the direction hr by vr.

When an area is scanned and it is found to not contain a certain robot r, for
each slot S covered by the radar cone the slot is updated to remove any prob-
ability that r is in this area, simply by removing any pair (r, p) from S if the
slot contains a pair (r, p). All other slots must be updated, to distribute the
removed probability from this slot into the other slots. This is shown in Figure
6.2.

The above description leaves out several details. Recall from Section 5.1 that
the world state component does not receive any sensor input and thus can-
not decide when robots have been scanned or not. Instead this is done by
the sensor interpretation module which is placed in Layer 1 as described in
7. The sensor interpretation module receives sensor input when robot r has
been scanned and sends an abstract wish destined for the fading memory tar-
get map with this information. The fading memory target map then performs
the necessary updating to reflect the new probabilities for robot r. For each
robot i not scanned in that turn, the fading memory target map updates the
probabilities for i accordingly.

42 Arbitrator Component

a) b)

Figure 6.2: This figure shows Aalbot, identified by a, and robot r. In a) Aalbot
moves its radar and scans an area where it is highly probable that r is posi-
tioned However r has moved to an area not scanned in this turn. The updated
target map is shown in b).

6.2 Arbitrator Component

The task of the arbitrator component is to perform the actuator activations
corresponding to the actuation wishes in the wish list from the subsumption
layers. While doing this the arbitrator component has to be aware of possible
conflicts in the actuation wishes. To simplify the task of identifying conflicting
wishes, the actuation wishes are separated into 5 different types:

• Robot Motion. Forward and backwards movement of the robot.

• Robot Turning. Turning the robot clockwise and counter-clockwise.

• Gun Turning. Turning the gun clockwise and counter-clockwise.

• Gun Firing. Firing the gun with a given power.

• Radar Turning. Turning the radar clockwise and counter-clockwise.

Conflicts can only occur between wishes of the same type and the arbitrator
solves some conflicts through priority, i.e. the layer number from which the
wish originated. Thus a basic solution can be found by simply sorting the
wishes by type and sorting wishes of the same type by their priority. The
wishes with the maximal priority of each type are then the only ones left to be
considered. From this reduced set it is trivial to decide the wish to be executed
if there only exists one wish of this type. It is however not straightforward to
decide which wish to select if there exists more than one wish of a certain type
(e.g. TargetWish), after the initial reduction. In fact since the wishes originated
from the same layer, there is no way for the arbitrator component to distin-
guish between them. To solve this dilemma the arbitrator simply selects the
wish that was generated first.

Chapter 7

Module Design

In Chapter 5 an architecture serving as the basic framework for Aalbot was
defined. In this chapter the behaviour controlling modules used in Aalbot’s
subsumption layers are defined, and the methods to be used for the imple-
mentation of the individual modules are chosen.

The necessary basis for choosing methods is given in the first section, where
problem models and problem solving methods are discussed in a general set-
ting. The structure of the following sections reflects the grouping of modules
into four categories, namely:

• Percepting

• Planning

• Moving

• Targeting and Shooting

These four types of modules collectively allow for a robot to be built with a
complete behaviour capable of participating in a Robocode match, as identi-
fied in Section 1.2. The chapter concludes with a choice of priority and place-
ment of the selected modules into the subsumption layers.

7.1 Necessity of Machine Learning

Faced with the problem of programming a robot to play and win the game of
Robocode it is interesting to look at several possible methods to achieve this
goal. As seen in Section 1.2 and Chapter 2 existing attempts at solving the
problem involve both traditional “hand-coded” methods as well as machine
learning. In this chapter the key difference between hand-coded strategies and
machine learning is discussed. Furthermore some guiding rules for selecting
the best method for solving a given problem are given.

43

44 Necessity of Machine Learning

7.1.1 Problem Models

Solving a real-world problem like calculating the strength of wires in the con-
struction of a bridge cannot be directly solved by a computer, as that would
require an omniscient computer. Instead the computer must work on a model
of the problem to be solved. This model can be simple and very general, or it
can be highly complex and tailored for one specific application – but still it is
not the actual bridge the computer interacts with, its calculations are based on
an idealised model of the bridge. A good model should ensure that results ob-
tained using the model are still applicable in the real world in the majority of
cases. Rare cases may exist where the assumptions of the model do not hold;
these cases should ideally be few.

A model of a problem is typically formalised as the calculation of a certain
mathematical function. For example, if the problem at hand is to determine
whether or not a person is eligible for a loan, then the formalised model of
the problem is a function that given the person’s age, yearly income, seniority,
etc. calculates a truth value: True meaning that the person is eligible, and false
meaning that the person is not eligible.

Many different such functions, each called a hypothesis, can be considered a
model. Somemight yield wrong results in all cases, othersmight be approxim-
ately correct and again some hypotheses can be completely correct. Problem
solving boils down to finding a correct hypothesis.

7.1.2 Properties of a Good Model

An important observation is, that the choice of domain and codomain for the
hypothesis to be found is a part of the model of the problem. Using the same
example as before, imagine that the person’s yearly income was not part of the
input to the hypothesis function; then it could be impossible to find any func-
tion that will output correct answers simply because insufficient data is avail-
able. On the other hand, having too many possibly irrelevant inputs would
overly complicate the model and make it harder to distinguish the useful data
from the useless.

The other aspect of problem solving is modelling the structure of solutions.
The hypothesis functions that are possible solutions can be defined by for ex-
ample a single real number, a vector of binary values, or very generally, as a
computer programwritten in some programming language. The chosen struc-
ture defines the hypothesis space[Mit97, chapter 2], which is the set of all pos-
sible hypotheses for the model. A simple hypothesis space is to be preferred,
as this minimises the number of wrong hypotheses. Compare it to finding a
needle in a haystack: The smaller the haystack is, the easier it is to find the
needle. On the other hand, if the hypothesis space is too narrowly defined,
it might not be possible to express a solution to the problem within the hy-
pothesis space; no correct hypothesis lies within the hypothesis space. This
means that a simpler hypothesis space should be preferred only as long as the

Necessity of Machine Learning 45

best hypothesis in the simple hypothesis space is at least as good as the best
hypothesis in the complex hypothesis space.

This phenomenon is captured in “Occam’s Razor”[Mit97, p. 65], which can be
formulated as:

“Prefer the simplest hypothesis that fits the data.”

That is, in striving to build a good model of the problem setting, it is import-
ant to find the simplest model that still provides enough information about
the real problem to be able to deduce the correct answers in the majority of
cases. The correctness of this principle has been debated for centuries and still
remains unresolved[Mit97, p. 65-66]. As such it is important to determine its
applicability to a certain problem setting before using it.

To define what is meant by a simple hypothesis or a simple model, [Piv00]
defines different types of simplicity. The relevant types are summarised be-
low, and can be used to analyse the results of implemented machine learning
algorithms:

• Structural Simplicity. A simple model is one with a simple mathemat-
ical structure. E.g. one where the dimensionality of the hypothesis space
is low. For example in neural networks, the simpler structure is the one
with fewer weights. This is preferred as too many weights increases the
risk of overfitting.

• Descriptive Simplicity. A simple model can be described concisely. In
genetic programming this could indicate that smaller individuals are in-
herently better than larger individuals (given that both individuals have
the same fitness value).

• Computational Simplicity. The simplest model is the one that requires
the least amount of computational effort to predict phenomena. For ex-
ample comparing two similar performing individuals evolved using ge-
netic programming, the one requiring the least amount of execution time
would be preferred.

• Predictive Conservatism. The model that claims the fewest correlations
between events is the simplest one.

To justify Occam’s Razor, [Piv00] gives a pragmatic and an epistemological
argument. The pragmatic being, that simpler models are better because they
make prediction tasks more straightforward, theymake it easier to communic-
ate the model and interpretations of the model, they involve less error-prone
computations, etc. The epistemological argument says that a simple model is
more likely to be true, by virtue of its simplicity.

The applicability of those arguments to the area of machine learning is not
entirely without problems. For example a neural network is inherently hard

46 Necessity of Machine Learning

to understand for a human observer — getting from the weights in the net-
work to reasoning about the actual problem is often impossible. It can seem
like black magic, but yet neural networks works in some cases. The model is
neither easy to communicate or interpret, however it has computational sim-
plicity. Similarly, genetic programming uses individuals with a relatively com-
plex mathematical structure, namely a computer program. On the other hand,
computer programs can be described quite concisely and in most cases inter-
preted quite easily. Given a computer program that solves a specific problem,
it is often possible to reason about how it works.

7.1.3 Problem Solving Methods

Given a proper model of the problem setting, a correct or approximately cor-
rect hypothesis can be found using several methods. The main approaches
considered in this project are analytical problem solving as used in the “hand-
coded” strategies, and computer-assisted problem solving.

Analytical Problem Solving

Through careful examination of the problem and its surroundings, perhaps
using experiments or logical deductions from already known facts it can be
possible to solve a problem completely using analytical tools. This often re-
quires a lot of a priori knowledge about the problem setting and structure.
An example of this type of problem solving could be the problem of finding
the distance between the two points, (x1, y1, z1) and (x2, y2, z2) in a Euclidean
three-dimensional space.

A person with a mathematical background can easily solve this problem, and
determine that the solution must be of the form:

f : R
3 ×R

3 → R

And that the correct solution is:

distance =

√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2

A person working without this a priori knowledge about geometry would
probably have a tougher time finding the correct solution to the problem.

However, analytical problem solving has many advantages. Due to the fact
that solutions are based on already established knowledge, the analytical ap-
proach implies that it is possible to reason about why a solution is correct, and
in some cases solutions can be proven correct. It is often also possible to de-
termine which assumptions the solution is based on, and thus clarify if there
are any extreme cases in which the model does not hold.

Necessity of Machine Learning 47

Computer-Assisted Problem Solving

Computers can assist in problem solving by searching for the correct solution
amongst a number of possible hypotheses in a hypothesis space. Normally
this is done by having the programmer define a hypothesis space and a al-
gorithm for searching through all or a part of this space. In some cases, the
hypothesis space is not entirely specified in advance by the programmer; in-
stead this is also learned or optimised by the problem solving algorithm. This
can for example be a method where the structure of neural networks are de-
veloped using genetic programming, as in [Mit02, p. 70-76].

In addition, it must be specified how the computer can determine whether a
given hypotheses is “good or bad”. This specification is normally referred to
as a fitness function or an evaluation function, which is structured as follows:

f : H → R , where H is the hypothesis space (7.1)

A hypothesis, h, is then preferred to another hypothesis, j, if f (h) > f (j). In
some cases, the fitness function is defined so that the hypothesis h is preferred
to the hypothesis j if f (h) < f (j).

The need for a fitness function restricts the applicability of this type of computer-
assisted problem solving to settings where it is possible to relatively easily
determine whether a given hypothesis is a good one, without being able to
deduct the correct solution from this knowledge. The constructed fitness func-
tion ought to be computationally cheap.

Often in machine learning methods a set of training data is collected, i.e. a
list with an input for the hypothesis function and the corresponding correct
output value. The fitness of a particular hypothesis is then judged by testing it
with each training example and estimating how closely the output resembles
the known correct output. In game settings it is often possible to determine
the fitness of an hypothesis by using the hypothesis to play the game against
another computer-controlled opponent and noting how often it wins.

Below several different algorithms for searching through a hypothesis space
are briefly described and their advantages and disadvantages are summarised.

Exhaustive Problem Solving

Given that the hypothesis space and the form of the solution function is known
in advance, it is in some cases possible to perform an exhaustive or brute-force
search.

An example of an exhaustive search could be determining whether or not a
piece of sensitive equipment has become too hot. Given a temperature as an
integer value, the problem is to determine whether this is “too hot” or “okay”.
The form of the solution is then:

48 Necessity of Machine Learning

g : {0, 1, . . . , 99} → {toohot, okay}

It is known in advance that there are two temperature intervals, one which is
too hot, and one which is okay. Also the temperature sensor can only report
integer values in the interval [0; 99] degrees. Therefore the simplest representa-
tion of the sought function is an integer threshold value. The hypothesis space
is then finite and sufficiently small to perform an exhaustive search; simply
try all possible hypotheses in the hypothesis space and determine the fitness
value for each. This gives 100 different values and the best function is then
the one with the optimal fitness value, i.e. the highest or lowest fitness value
depending on the definition of the fitness function.

The advantage of the exhaustive search is the guarantee to find the model cor-
responding to the global extremum of the fitness function. The disadvantage
is that in praxis it is only possible to try all hypotheses for small hypothesis
spaces, which is normally not the case. With too many possible hypotheses,
the time spent trying them all one after one will be prohibitive. With an infin-
ite hypothesis space, the exhaustive search will never complete.

Neural Networks

Another method for searching through a hypothesis space is the use of neural
networks trained using the back-propagation algorithm. In the case of neural
networks, the hypothesis space is defined by the structure of the network. A
single hypothesis consists of the values of all the weights in the network. As
noted in Appendix A, the backpropagation algorithm searches the hypothesis
space in a hill climbing (or rather descending) manner by following the gradi-
ent.

According to [Mit97, p. 85], neural networks trained using back-propagation
are advantageous in settings where:

• Training set instances are represented by many attribute-value pairs.

• The hypothesis function outputmay be a vector of several real- or discrete-
valued attributes.

• The training examples may contain errors.

• Longer training times are acceptable.

• Fast evaluation of the learned target function may be required.

• The ability of humans to understand the learned target function is not
important.

Contrary to the exhaustive search, it is possible for neural networks to get
“trapped” in a local minimum during training.

Percepting 49

Reinforcement Learning

In reinforcement learning the sought hypothesis is a Q table which is used to
determine an optimal policy, as described in Appendix B. Thus the hypothesis
space is the set of all such tables. As noted in [Mit97, p. 367], reinforcement
learning is appropriate to problemswhere an autonomous agent, which senses
and acts in its environment, must learn to choose optimal actions to achieve
its goal. This description is clearly very appealing in the Robocode scenario,
where Aalbot is the agent and the environment is the battle field and the en-
emies.

In order to apply reinforcement learning, it must be possible to define an ap-
propriate and limited number of states in which Aalbot can be. Rewardswhich
acknowledge or disacknowledge actions taken by Aalbot must also be possible
to define, and these should be delayed in time.

Genetic Programming

In genetic programming the hypothesis space is defined by all possible pro-
grams which can be represented using the chosen syntax. The search proceeds
by evaluating an entire population of hypotheses, which is typically spread
throughout the hypothesis space. This approach can be considered a com-
promise between exhaustive search and the search performed by neural net-
works, as the latter only maintains a single hypothesis at a time.

In theory, the set of solutions solvable by genetic programming is a superset
of the solutions which can be solved by any other machine learning method
[Ben98, p. 22]. The intuition is that every machine learning method is imple-
mented as a computer program, which hence is contained in the hypothesis
space of a genetic programming search. Therefore genetic programming can
in principle be chosen for modules in Aalbot in which neither neural networks
nor reinforcement learning are suited. However for genetic programming to
be applicable in praxis and in the time frame of this project, it must be pos-
sible to chose a well defined fitness function and a delimited syntax for the
language to be evolved.

7.2 Percepting

Perception is the functionality of the robot that transform immediate sensor in-
puts into manageable information. It uses the relatively simple sensor inputs
to update more advanced data structures continuously. Examples of valuable
information that could be collected through perception are the locations of en-
emies, possible locations of bullets in flight, themovement patterns of enemies,
etc.

50 Planning

The sensor interpretation module is responsible for updating the world state,
whereas the radar control module is responsible for rotating the radar in an
useful fashion.

7.2.1 Radar Control

As described, the problem of determining an optimal scanning strategy is a
complex problem. Section 1.2 describes a few hand-coded scanning strategies
used in typical robots. Both the basic scanning strategy and the alternate dir-
ection scanning strategy have pros and cons, and it is not easy to determine
which of the two would be best in Aalbot, thus we have chosen to use ma-
chine learning to develop the radar control module.

It is intuitively a good idea to let the radar control module take advantage
of the fading memory target map, to optimise its scanning strategy. Many
other types of information are of possible use to the radar control module, for
example movement histories of enemies, estimates about the gun heat of en-
emies, the energy level of enemies, the position of Aalbot itself, knowledge
about which enemy is the currently selected target, etc. It is not easy to de-
termine the usefulness of each type of information in advance by analytical
methods. In addition the encodings of these inputs for a neural network or
for reinforcement learning would be large and difficult to handle. Therefore
genetic programming is chosen for the radar control module.

7.2.2 Sensor Interpretation

The sensor interpretation module uses the sensor input in each turn to update
the world state component. This includes the enemy information table and
the fading memory target map. This is done by transforming the events where
Aalbot scans an enemy robot into abstract wishes to update the world state
component.

Due to the straightforward functionality of this module, this module is chosen
to be handcoded.

7.3 Planning

A planning robot is capable of making deliberate choices internally that affect
its future actions. That is, given the internal world state model, it decides on
specific behavioural patterns to exhibit in the following turns. This can be
relatively simple choices, like choosing which robot to target for an attack, or
it can be more advanced choices that involve choosing an overall strategy for
the whole game.

The concept of planning is relaxed a bit here to accommodate the nature of the
Rocobode game. Specifically it is hard to let the robot do projection, that is,

Planning 51

having it understand which effects on the environment each possible action
will have. This is both because of the sheer number of possible actions, as well
as the fact that the actions of enemies are not easily predictable, nor is the game
fully deterministic. Because of this only a target selectionmodule is employed.

7.3.1 Target Selection

Choosing the right target is crucial for success in Robocode. It is easier to kill
some robots rather than others – some may be very advanced robots, some
may be dumb robots, and some robots have large amounts of energy, others
are near death.

A number of parameters describing partial world state can be used to determ-
ine the enemy that it would be most fruitful to target. Choosing the most fruit-
ful targets throughout the game means that the choices are optimal for win-
ning the game overall. The opposite, namely that winning the game means
that the most fruitful targets have been chosen, is not necessarily true. It is
possible to select suboptimal targets and still win the game by luck. The para-
meters to be considered could be:

• Number of enemies

• Enemy distance

• Enemy position

• Enemy energy level

• Enemy velocity

• Enemy heading

• Probability that we can aim correctly at each enemy

The information in the last item, the probability that we can aim correctly at
a specific enemy, is obtained from the targeting module explained later in this
chapter.

The analysis shows that several analytical methods for target selection have
been tested, including selecting the nearest enemy, selecting the weakest en-
emy - or alternatively selecting the enemy based on a ratio between distance
and energy difference. No single method is generally accepted to be the op-
timal method. Therefore machine learning will be applied to this problem.

As a single robot takes up several pixels on the gaming area, it is possible
to segment the above mentioned position inputs into manageable categories.
Similarly the energy levels and probabilities can be segmented into quite few
segments. Therefore the number of possible permutations of these input para-
meters are greatly reduced: this means that reinforcement learning can poten-
tially be used to solve the problem, as the number of states would be manage-
able.

52 Moving

In addition it is possible to define rewards that can easily be justified – such as
hitting a target, destroying a target and winning the game.

These two assumptions together leads to the choice of reinforcement learning
for developing a target selection policy.

7.4 Moving

Proper robot movements are vital in ensuring survival and success. Contrary
to classical movement problems described in the literature, such as the block
stacking problem[Mit97, p. 263-265] or path finding, the robot cannot eas-
ily think ahead to determine how its movements will affect the game due to
the other robots. Therefore it is neither important nor feasible for a robot to
construct movement plans covering many turns into the future as this future
is very uncertain. Instead the movement modules should focus on reactive
“real-time” decisions.

The modules in this section all rely on well established, non-machine learn-
ing methods. However a movement module using genetic programming will
also be designed in order to investigate if this machine learning method can
produce equally good results.

7.4.1 Fading Memory Anti-gravity Movement

Anti-gravity, identified in Subsection 1.2.3, is a technique for deciding robot
movement. It has been used successfully in many high-end robot variants,
and therefore this method is also adopted for Aalbot. That is, movement will
be hand-coded using the analytical approach described below.

Inspired by Newtonian physics, the robot maintains a map of the gaming area
with a number of attractive or repelling gravity points. Each gravity point
has a specific location on the gaming area, and radiates force of a specified
strength. The impact of a force on the robot diminishes by the square of the
distance from the origin of the force to the robot. Deciding the movement
direction of the robot is simply to sum up the contributions from all the forces
as vectors, and moving the robot in the direction indicated by the resulting
vector.[Owe02]

For use inAalbot the anti-gravity technique is expandedwith “fadingmemory”,
i.e. the force of a gravity point diminishes over time.

Mathematically, a single gravity point, GP, can be described as follows:

GP is a 4-tuple, (x, y, s, t), where (x, y) is a position on the gaming area,

s ∈ [−1; 1] is the strength of the force
and t ∈ N is the time the point was placed

Moving 53

The strength of a specific gravity point, (xi, yi, si, ti), observed at the robot at
time tn is then:

siobserved
=

si

(∆t + 1)

(

√

(x− xrobot)
2 + (y− yrobot)

2

)2

=
si

(∆t + 1)
(

(x− xrobot)
2 + (y− yrobot)

2
)

where xrobot and yrobot denotes the position of Aalbot and ∆t = tn − ti is the
age of the gravity point. This specifies that the absolute strength of a gravity
point diminishes with the square of the distance between the gravity point
and the robot times the age of the gravity point. A negative strength means an
attractive force, whereas a positive strength yields a repelling force.

The force on the robot given by a single gravity point is then expressed as a
vector as follows:

Fi =

(

siobserved
· sinφ

siobserved
· cosφ

)

where φ is the angle between the robot and the gravity point relative to the
y-axis. Note that the order of sin/cos is the reverse of standard mathematical
coordinate systems due to the orientation of the coordinate system in Rob-
ocode.

Every gravity point in the system affect the movements of Aalbot. The total
force on Aalbot is:

Ftotal =
n

∑
i=1

Fi

Aalbot can then be instructed to move according to the Ftotal vector.

Other modules can send abstract wishes to the anti-gravity module asking for
it to add or delete gravity points to the map.

7.4.2 Wall Avoidance

Part of the Robocode rule set is that the robot is penalised for ramming into a
wall. This makes it attractive to build in automatic wall avoidance, i.e. taking
evasive actions if the module detects the robot being near a wall. This is done
by asking the anti-gravity module to place static repelling gravity points along
the walls at each pixel.

The location of the walls is known in advance, so this module will be hand-
coded.

54 Targeting and Shooting

7.4.3 Randomisation

To avoid that Aalbot becomes a deterministic robot, the choice of adding a
randomisation module is made. The module is invoked when it receives an
abstract wish from another module; it will then place a very strong gravity
point to ensure a sudden movement in a random direction. Due to the simpli-
city of this module, it will be hand-coded.

7.4.4 Bullet Dodging

As identified in Subsection 1.2.3, an effective bullet dodging method has been
analytically defined. Therefore it is chosen to hand-code this module instead
of using machine learning.

The module must be able to employ a heuristics to determine whether or not
opponents have fired a bullet or not. A drop in energy below a threshold of
3 could mean that the opponent fired a bullet, but this is not necessarily the
case. The module must somehow “guess” whether or not this is the case.

Once this module detects the firing of a bullet, it notes the position fromwhere
the bullet was fired. Since there is no way to detect the bullet’s direction, a bul-
let is represented by a virtual wave front (a circle). In every turn, the circle radius
is updated to be equal to the expected distance travelled by the bullet. When
the circle is close to the robot’s current position, a virtual wish for randomised
movement is added to the wish list.

7.5 Targeting and Shooting

Important to most attacks is the successful use of the gun on the robot. In
particular it is important to be able to aim correctly so that the chance of hitting
the enemy is optimised.

This module should output for each enemy the angle to rotate the gun turret,
the shooting power as well as a probability stating how likely it is that Aalbot
will be able to hit this enemy. This last piece of information is required by the
target selection module.

The analysis discovered that a form of machine learning, pattern matching,
had successfully been employed to handle targeting. No analytical approaches
with as good results in the general case as the pattern matching method was
identified. Therefore machine learning has been chosen for the development
of a targeting module.

Prediction of future enemy positions must be based on a history, where pos-
sible parameters include:

• The location of Aalbot

Module Priorities 55

• The location of the enemies

• The heading and velocities of enemies

These inputs are few and simple to encode as real numbers. Also because
the module must calculate angles and shooting strength for all enemies every
round, it is important that this is relatively, computationally cheap. Finally the
mentioned input parameters are not necessarily recorded with the same time
interval, so noise may be present.

Neural networks work well for problems with such characteristics[Mit97, p.
85]. In addition, the analysis described how neural networks had earlier been
successfully applied to this area, therefore the choice of using neural networks
for this module is made.

7.6 Module Priorities

Nine modules have been identified for placement in Aalbot’s subsumption
layers, and machine learning has been chosen for three of these. Neural net-
works are used for targeting, reinforcement learning is used for target selection
and genetic programming is used for radar control.

Figure 7.1 illustrates the placement and priority of the chosen modules; higher
layers are given higher priority, and the top layer is the interface to the ar-
bitrator component. In cases where modules are independent, they have been
placed in the same layer. The sensor interpreter and targetmapmodules are re-
sponsible for updating theworld statemodule, andmust therefore be executed
in the first layer, prior to the remaining modules. Target selection depends on
the wish list from the targeting module, hence the relative placement of these
two modules in the second and third layers. Modules for movement, radar
control and bullet dodging follow in the fourth and fifth layers – these may
depend on the selected target. The randomisation module is given highest
priority in the sixth module.

56 Module Priorities

Sensor Interpreter Target Map

Target Selection

Randomisation

Wall Avoidance

Targeting

Movement

Radar Bullet Dodging

Figure 7.1: The placement of modules in Aalbot’s subsumption layers.

Chapter 8

Neural Network Module

The targetingmodule has been selected as a candidate for neural network con-
trol, which is the topic of this chapter. Focus will be on training a network to
target a single robot, since in the case of melee battles multiple networks can
be employed, one for each enemy. The target selection module would then
be responsible for selecting the appropriate enemy to be pursued. In terms of
the Aalbot framework, the output of the neural network module will be an
abstract wish containing, for each enemy, the angle in which to turn the turret
and the probability of a successful hit. The wish is the fulfilled by the target
selection module, which chooses one of the given angles in which to fire the
gun.

Neural network targeting design is divided into three steps. First a suitable
target function is chosen in a top-down manner by considering which Rob-
ocode game parameters are relevant and how these can be encoded as net-
work inputs and outputs. Secondly a data preprocessing scheme is derived
based on the chosen target function, and finally network training is discussed.
The reader is referred to Appendix A for an introduction to neural networks.

One overall design criteria will be guiding throughout the chapter, namely
the support of online training. Relying solely on offline training would require
extensive training time, because a network would have to be trained for all
conceivable types of enemy robot movements. On the other hand, the require-
ment of online training will place some limitations on network and prepro-
cessing complexity in order to deliver real time results. Therefore the criteria
for computational efficiency naturally follows from the online training criteria.
The extent to which online training is realistic, given the processing restric-
tions of Robocode, is hard to predict, but the possibility should nevertheless
be pursued because of the substantial gain in robot adaptability.

8.1 Target Function Representation

Neural networks are applied to function approximation tasks, so the first step
in designing a neural network for targeting is to define the domain and range

57

58 Target Function Representation

of the function to be approximated. In otherwords the issues ofwhat to compute
and which inputs are required to achieve good results must be dealt with.

Because the ultimate task of the targeting module is to decide on the possible
angles in which to move the gun turret before shooting, the neural network
should ideally be able answer the following question:

Given all relevant game parameters, in which direction should the turret point in order
to hit the enemy, and with which power should the gun be fired?

Here the relevant game parameters amount to the parameters which influence
the movement of the enemy in question as well as Aalbot’s position. Let a
game configuration be defined as the bullet speed, the positions of all robots,
their heading and their energy at a given time. In the most difficult case, the
enemy’s movement at time t will depend on t such configurations, so the num-
ber grows linearly in time. Additionally the number of variables in a configur-
ation gives rise to a large amount of possible configurations.

Hence the task is to select a limited number of parameters which are likely to
have the largest impact on enemy movement, a process sometimes referred to
as feature selection[Chr95, p. 2]. The next subsection deals with this problem
with offset in the analysis, and is followed by a discussion on how to encode
network outputs. The section concludes with a summary of the possible target
functions to be tested empirically.

8.1.1 Input Parameter Selection

As a first step in reducing the number of game parameters to be considered,
assume that the movement of a robot depends primarily on the robot’s own
movement history. This is certainly the case for many simple robots, e.g. a
robot which always moves around the battlefield while sticking to the edges
(take the Walls robot of the sample package as an example). But even if the
movement of a target robot depends on other robots, parts of this dependency
will be encoded implicitly in the target robot’s movement history – consider
as an example a robot which always moves away from its enemies. Hence the
assumption seems reasonable.

Recall from Subsection 2.2.1 on previous work that the representation of a tar-
get robot’s history can be based on a fixed size sequence of heading/velocity
pairs:

s = (h, v)1 , (h, v)2 , · · · , (h, v)n

Is this history representation suitable, and is the history sufficient for good
prediction of future positions?

In answering the first question one problem is apparent: prediction cannot
take into account the target robot’s position in the battle field. While this sim-
plifies the model, many robots will move differently in the centre of the battle

Target Function Representation 59

field than at the corners. For instance a robot might be prevented from re-
peating its movement pattern when in danger of colliding with the battle field
walls. One solution is to augment the history with the target robot’s initial
position in Cartesian coordinates (x, y). Alternatively the heading/velocity
representation can be altogether replaced with (x, y) pairs.

Another potential problemwith the heading/velocity history representation is
that no time parameter is taken into account. The absence of time is reasonable
if there are strict upper and lower bounds on sampling delays, i.e. the time
between successive radar sweeps of the target robot. In one-to-one battles this
is often the case, whereas in melee battles the radar must cover more than
one enemy. Furthermore in the Aalbot architecture several modules might be
competing for radar control, and compromises have to bemade. Consequently
the time parameter should not be left out entirely; instead it will be taken into
account during the preprocessing phase, which is to be discussed in the next
section.

So far only a suitable history has been considered. The need for further input
parameters will depend on the desired network output. In Subsection 2.2.1 the
network output was simply the heading/velocity following the last element
in the input history (after a fixed time period). Several feed forward cycles
were then required, and some clever postprocessing was needed to predict
the actual angle in which to point the turret. Alternatively the network could
directly output the angle in which to point the turret given appropriate input
data. Figure 8.1 illustrates the information required, namely the target robot’s
movement history, Aalbot’s position and the velocity with which the bullet is
to be fired (recall that bullet velocity depends on the power with which the
bullet was fired). Hence bullet velocity must be determined in advance, and
for simplicity this is assumed constant. The collection of training data for the
angle prediction needs to be tailored for this approach to work, an issue to be
discussed further in Section 8.3.

These added parameters will place increased demand on the amount of train-
ing data, and additional time and processing resources may be required to
harvest a single training example. On the other hand, only one feed forward
cycle will be needed for prediction, thus eliminating the inevitable accumula-
tion of errors caused by multiple feed forward cycles[Chr95, p. 303]. Further-
more when receiving the turret angle directly as network output, processing
resources are not needed to reconstruct the enemy’s expected path.

8.1.2 Network Output Encoding

Several possibilities for network output values were discussed in the previous
section, but the issue of how to encode these values remains unresolved. All
options share the characteristic that they require quantitative valued outputs,
such as an angle or a pair of (x, y) coordinates. Approximation of quantitative
valued functions is in the literature referred to as regression [Chr95, p. 5].

60 Target Function Representation

(t, x, y)1

(t, x, y)n

(

x f , y f

)

x

y

α

Figure 8.1: Illustration of the required input parameters when using the neural
network to predict the angle in which to point the turret. The filled circles rep-
resent the enemy robot (left) and Aalbot (right). The solid curve is the observed
history of the enemy, while the dotted curve is the expected future path of the
enemy. α is the network output, indicating the angle that the turret should
point relative to the y axis in order to hit the enemy on its future path. Note
that time is not explicitly depicted.

The obvious approach would be to simply use these quantitative values dir-
ectly as target outputs when training the network. However this makes it
difficult to asses how certain the network is of its output: while the outputs
are within reasonable bounds (e.g. an x coordinate should be within the width
of the battle field), there is no reason to doubt the result. It would then be
impossible to contribute to target selection based on network certainty.

Instead categorical target values could be chosen, where one output neuron
generally represents one category. In the case of Robocode, an x coordinate
holding values in the range [1 . . . 800] could be encoded categorically by 800
output neurons. If for instance the value of x is 5, neuron five should output
the value 1, while the remaining 799 neurons should output the value 0.

In the general case consider a computed output vector, −→o , of dimension N.
The value to select will be the vector index, n, of which the element on has the
highest value. The error function (A.2) defined in Appendix A can then be

used to express the certainty of output −→o in reference to a target,
−→
t , of which

the n’th component is 1 and the remaining components are 0. Smaller errors
would then indicate higher certainty.

However there is a problem with this approach, namely that the error is diffi-
cult to relate to certainty – how low should the error be for Aalbot to rely on the
network result? Ideally each output value should be interpreted as the probab-
ility that the associated category holds, i.e. the output values should sum to 1.
This property can be achieved by using the softmax[Chr95, p. 238] activation
function in output layer neurons:

Target Function Representation 61

σ (yk) =
exp (yk)

∑i exp (yi)

where yk is the activation function input for output neuron k.

Clearly, using 800 output neurons to represent one x value is out of the ques-
tion because of the efficiency criteria. However this number can be reduced
by letting each output represent a range of e.g. 10 pixels, reducing the number
of output neurons with a factor of 10. Relative to the dimensions of a robot at
approximately 36× 45 pixels, this figure is reasonable. Whether the categor-
ical output encoding should be pursued depends heavily on the outputs to be
represented and the number of feed forward cycles required for a single pre-
diction. If multiple feed forward cycles are required, the error accumulated by
letting each neuron cover a range of values is probably unacceptable. On the
other hand, if the network uses a single feed forward cycle to output an angle
in which to point the turret, categorical encoding is feasible.

8.1.3 Summary

A definitive choice of game parameters to include as network input and how
to encode the target output is difficult to make. The preceding subsections
have argued for different target function representations which are likely to
provide good results. However one cannot reason about whether the compu-
tational requirements to approximate these functions will allow for sufficiently
fast response times in the context of Robocode. The only way to resolve this
issue is therefore by empirical testing.

The following list summarises the target functions, o, to be considered in a
test. Here −→s will denote the function domain vector (network inputs), while
o
(−→s

)

will denote the function range (network outputs). The time parameter
is included, but will be dealt with in the preprocessing phase.

1. Predicting one-step-ahead velocity/heading pairs based on a history given
by time, heading and velocity:−→s = (t, h, v)1 , (t, h, v)2 , · · · , (t, h, v)n , tn+1

o
(−→s

)

= (h, v)n+1
The last time parameter, tn+1, refers to the time of the output head-
ing/velocity pair (h, v)n+1.

2. Predicting one-step-ahead (x, y) position based on time and coordinate
history:−→s = (t, x, y)1 , (t, x, y)2 , · · · , (t, x, y)n , tn+1

o
(−→s

)

= (x, y)n+1

3. Predicting the angle in which to point the turret in order to hit the en-
emy on its future path. Input is based on a history given by time and
Cartesian coordinates, as well as the position of Aalbot,

(

x f , y f

)

. The

62 Preprocessing

output angle is encoded categorically into m outputs:−→s =
(

x f , y f

)

, (t, x, y)1 , (t, x, y)2 , · · · , (t, x, y)n

o
(−→s

)

= v1, v2, · · · , vm

8.2 Preprocessing

Having identified possible target functions, domain/range data could in prin-
ciple be used directly as network input/output. However this is not neces-
sarily desirable, as a systematic processing of training data can significantly
enhance the effectiveness of the neural network. In general the process of ap-
plying a neural network to a regression or classification task can be divided
into three distinct phases: preprocessing, network processing and postprocessing.
In the case of the Robocode movement prediction task, three transformations
will be applied to training data in the preprocessing phase: missing time com-
pensation, translation and scaling. These will be the main foci of this section.

The postprocessing phase simply involves applying the inverse transforma-
tion of the preprocessing phase, and hence will not be discussed further.

The transformations to be discussed are independent of how the movement
history is represented; whether inputs are given by (x, y) coordinates or head-
ing/velocity pairs does not matter. Similarly no distinction between input and
output need be made. But because transformations on coordinates in the plane
are most intuitive, data on the following form will be used as a running ex-
ample in this section:

−→s = (t, x, y)1 , (t, x, y)2 , · · · , (t, x, y)n (8.1)

8.2.1 Time Normalisation

Ideally samples should be recorded with equal time delay, but as mentioned
in Subsection 8.1.1, this cannot be assumed. Since robustness to noisy data is
one of the strengths of neural networks, one option is to simply discard the
time parameter. Another option is to preserve the time parameter, including it
as input to the network. This would mean that for each sample, i, three inputs
with the values ti, xi and yi would be given.

Preserving the time dimensionwill however require both an increased number
of training examples and an increased number of network weights because of
the curse of dimensionality[Chr95, p. 7-9]. This principle states that the size
of the hypothesis space increases exponentially in the number of dimensions
added to the training data.

In support of the online training criteria, a solution should therefore be sought
where time is not explicitly included in the training data, but where the data is

Preprocessing 63

(t, x, y)1

(t, x, y)n

x

y

(t, x, y)1

(t, x, y)n

x

y

(a) (b)

Figure 8.2: Training data before (a) and after (b) time normalisation in the case
of an (x, y) based history. The solid lines represent actual movement paths,
while the crosses represent sampling points. In (a) the time interval between
sampling points varies, while in (b) it is constant. In both cases a constant
speed is assumed.

processed to compensate for the varying delay between samples. The situation
is depicted in Figure 8.2, where data is altered such that the time between each
sample coordinate is constant. This transformation will be referred to as time
normalisation.

The illustration is simplified by assuming constant speed of the enemy robot.
However the speed is important to capture in the transformation because it
varies over time – for instance a robot is forced to decrease its speed while
turning. In such cases the distance travelled in between two samples is not
necessarily constant after normalising time.

Details on how to calculate the time normalised coordinates will now be given.
Using the notion in Equation 8.1, the total increase in time during sampling of
history −→s is tn − t1, and the average time between samples is therefore:

∆̄t =
tn − t1

n

Let ∆ti = ti − t′i−1, ∆xi = xi − x′i−1and ∆yi = yi − y′i−1 where the prime indic-
ates values after normalisation and t′1 = t1, x′1 = x1, y′1 = y. Every coordinate
(x, y)i, i ∈ {2, . . . , n− 1} can now be replaced with coordinate (x′, y′)i as fol-
lows:

x′i = x′i−1 + ∆xi · ∆̄t
∆ti

y′i = y′i−1 + ∆yi · ∆̄t
∆ti

Figure 8.3 gives the intuition in why these formulae work and serves as an
example of how to apply them. Time normalisation thus results in a constant
time between samples, and the time parameter can be removed entirely from

64 Preprocessing

t3 = 12

t′3 = 15

t1 = 5

y1 = 0
x1 = 0

x3 = 14
y3 = 29

y2 = 20
x2 = 7
t2 = 10

x

y

∆t3 = 2
y′3 = 20+ 9 · 52 = 42.5
x′3 = 7+ 7 · 52 = 24.5

∆x3 = 7
∆y3 = 9

Figure 8.3: Example of how a coordinate is modified when normalising time.
Each cross marks a sample (t, x, y)1 , (t, x, y)2 and (t, x, y)3. The average delay
between samples is assumed to be 5, so (t, x, y)3must be shifted up and to
the right in order to capture the implicit constant delay, thus resulting in
(t′, x′, y′)3.

the data set. Although the explanation of time normalisation has been groun-
ded in (x, y) based histories, the method applies equally well to heading/ve-
locity based histories.

8.2.2 Translation and Scaling

This subsection considers how translation and scaling of network data can be
applied and why these transformations are desirable. Data is again assumed
to consist of (x, y) coordinates, but with time removed by normalisation. A
distinction between the preprocessing of data column vectors and row vectors
has to be made, so let the training data be represented as a matrix:

M =

x11 y11 x12 y12 · · · x1n y1n
x21 y21 x22 y22 · · · x2n y2n

. . .

xm
1 ym

1 xm
2 ym

2 · · · xm
n ym

n

Each row in M corresponds to a single training example, where no distinction
between input and output is made. A variable xi is then defined to represent
a value from the column vector x1i , · · · , xm

i , and yi correspondingly represents
values from the column vector y1i , · · · , ym

i . The scaling transformation to be
introduced shortly operates on column vectors (and thus considers variables),
while the translation transformation operates on row vectors (individual train-
ing examples).

Preprocessing 65

In a more general setting, scaling and translation is often combined to perform
normalisation[Chr95, p. 298]. Since this is the inspiration of the approach ad-
opted in Aalbot, normalisation is briefly explained in the following. The n’th
value of variable xi, xn

i , is normalised by subtracting the mean xi of xi and
dividing with the standard deviation σi over xi (i.e. all values in the column
represented by xi):

x̃n
i =

xn
i − xi

σi

After applying normalisation, a variable has zero mean and a standard devi-
ation of one, hence assuring that all input variables in the training data have
the same order of magnitude.

Since normalisation is a linear transformation, one might argue that the net-
work could deal with this itself if necessary – so why bother with this during
preprocessing? There are two answers to why scaling is appropriate. First, the
use of a particular activation function such as sigmoid requires that outputs
are scaled to the range of the function prior to training. Second, consider the
case where values of the input variable xi is an order of magnitude 1000 times
that of the values of y j, and assume that weights are initialised to random
values in the interval [−1; 1], which will be the case for the Aalbot network.
There is no particular reason to believe that xi should have more influence on
network output than y j, so it is likely that a lot of training cycles will be spend
adjusting the weights from xi to very small values. This problem is remedied
by scaling [Chr95, p. 299].

Normalisation is not directly applicable in the case of Robocode. Because on-
line training must be supported, the number of training examples grows over
time, and the standard deviation would change with each added example. Re-
peating the preprocessing of the entire training set every time a new training
example is added would be in breach with the efficiency demands.

Scaling is instead performed by dividing every value of variable xi by themax-
imum possible value of the variable, which in this particular example corres-
ponds to the width of the Robocode battle field (and equivalently for the yi

variables). Every variable will then have values in the same range [0; 1], which
was the primary goal of applying scaling in the first place.

Translation involves adding a constant term to each value of the input/out-
put data. More specifically the value x1 is subtracted from each of the values
x1 · · · xn and the value y1 is subtracted from each of the values y1 · · · yn. This
translation has the effect that the history always starts at (0, 0), while the rel-
ative position between coordinates is preserved. Translated coordinates may
thus contain negative values.

However the motivation for representing histories by (x, y) coordinates was
that absolute battle field positions are of significance, and this information is
discarded in translation. Hence translation on a per example basis is better
suited for training data consisting of heading/velocity pairs: the heading and

66 Training

Before scaling and translation After scaling and translation

1 1

11

y

x

y

x

(x, y)n

(x, y)1

(x, y)1

(x, y)n

Figure 8.4: The solid curve traces the robot movement history before and after
scaling and translation.

velocity of the first sample in the history is unlikely to have any impact on
future values, so both heading and velocity can be translated. The number of
required training examples is likely to be reduced if this kind of translation
is applied, because the network does not have to generalise beyond examples
which only differ by translation.

Figure 8.4 concludes this subsection by illustrating the result of applying trans-
lation and scaling.

8.3 Training

The previous two sections have focused on the choice of target function and
how network input data can be preprocessed. In this section the chapter is
completed with a brief discussion on which network topology and training
algorithm to choose, as well as issues relating to data collection.

8.3.1 Training Algorithm

The backpropagation algorithm, based on gradient descent, is one of the most
common algorithms for training neural networks [Mit97, p. 83]. Implement-
ation is simple compared to other algorithms, and the results are generally
good.

From an efficiency point of view, the basic version of backpropagation unfor-
tunately performs rather bad[Mit97, p. 264-265]. One reason is that a suitable
value for the learning rate, η, is difficult to choose, and that this value is con-
stant during training – toward the end of training, a very small learning rate
would be desirable, while at the beginning, the learning rate should be large

Training 67

. . .
. . .

h1 v1 hN vN

hN+k vN+k

rh

ri

Figure 8.5: Single-step ahead neural network organised with a feed back cycle.

in order to allow for fast training1. Another reason for bad performance is the
manner in which the search is guided along the gradient, which (informally
speaking) follows a zig-zag pattern toward a local minimum. A number of al-
ternative, more efficient training algorithms are described in [Chr95, Chapter
7].

In support of the online training design criteria, an efficient training algorithm
should be chosen. However the increased complexity of advanced training
algorithms requires larger effort for implementation, which does not fit the
time frame of this project. Instead backpropagation is chosen, as this allows
for use of existing programming libraries which have been thoroughly tested
and are known to work well.

Two training parameters are directly related to the backpropagation algorithm,
namely the learning rate, η, and themomentum,α [Mit97, p. 100]. In [Mit97, p.
115] the value 0.3 was used for both parameters, so values of this magnitude
can be assumed to be appropriate for the Aalbot neural network. However
tweaking η and α can result in better convergence during training, so more
suitable values should be determined empirically.

8.3.2 Network Topology

The standard backpropagation algorithm operates on an acyclic network, i.e.
there are no feed back cycles. Recall that the two first target function represent-
ations in Subsection 8.1.3 only predict target positions one step ahead in time,
and hence multiple feed forward cycles need to be performed. This process
was discussed in the analysis and depicted on Figure 11.3. However one prob-
lem is apparent, namely the accumulation of errors in each cycle. To overcome
this, the concept of recurrent networks is investigated based on [Mit97, pages
119-121].

A recurrent network contains one or more feed back cycles. Figure 8.5 shows
how a recurrent version of the network discussed in the analysis can be recon-
structed by adding a feed back cycle from one additional hidden neuron, rh, to

1In the specific scenario of Aalbot, a constant learning rate is still desirable because training
is performed online and new examples are added incrementally.

68 Training

one additional input unit, ri. When the k’th feed forward cycle is performed, rh

will serve as amemory for the previous k− 1 cycles. By inputting this memory
into ri, the k’th output will thus be influenced by the computations of all k− 1
feed forward cycles and not just the output from the last computation. Hence
a potential error in one feed forward cycle will not have as profound an impact
on the final result when a recurrent connection is present.

A variation of backpropagation can be used for training a recurrent network,
but the results are generally not very good: training is more difficult and net-
works do not generalise as reliably as standard acyclic networks[Mit97, p.
121]. Therefore this solution will not be pursued, although the method has
some appeal.

A network with three layers (one hidden) will be used, as this has the poten-
tial of approximating any bounded continuous function (see Chapter 8); there
is no reason to believe that this property does not hold for the sought target
function. The number of input units and hidden units is very difficult to reason
about, and hence these parameters will be left for empirical testing.

8.3.3 Data Collection

Possible approaches to the collection andmanagement of training data is briefly
discussed in the following. Data collection refers to the process of composing
training examples for the target function representations which have been dis-
cussed earlier in this chapter. Data management in Aalbot concerns the selec-
tion of training examples from the total set of collected training data, which
differs from approaches taken where offline training is employed.

Consider again the three target function representations chosen in Subsection
8.1.3. Collecting data for the first two is straight forward. A sequence of
(t, x, y) or time/heading/velocity triples is recorded, and if the data is used
for training, the last triple is used as the target output value.

Collecting training examples for the third case requires more consideration
though. Given the enemy movement history, the position of Aalbot and an
angle between the two, an angle in which to point the turret should be chosen.
Using the concept of virtual bullets is one possible way of collecting training
data on this form.

A virtual bullet is a bullet that is not actually fired, but its movement across
the battle field is simulated. Simulation can be performed by calculating the
bullet’s position at each clock tick, and testing if it is within a certain radius of
an enemy robot; if so, the bullet has hit. The simulation stops when the virtual
bullet leaves the battle field boundaries. With regular intervals, the robot can
fire a spread of e.g. 40 virtual bullets in all directions. The angle of the first
bullet to hit the enemy (if any) can then be used as the target output value in a
training example.

Simulating bullets in this manner is not optimal though, because a finite num-
ber of bullets must be maintained and the resolution (i.e. distance between

Summary 69

bullets in a spread) decreases with the square root of the bullet’s distance from
its firing position. Another more analytical simulation can be performed by
only maintaining a single, direction-less bullet, b, for every time Aalbot has an
opportunity to fire, which simply holds the Cartesian position (x, y)b and time,
tb, at which the bullet was “fired”. The speed, vrequired, with which b should
have been fired in order to hit an enemy, e, at its present position, (x, y)e, and
at time, te, can then be calculated:

vrequired =

√

(xe − xb)
2 + (ye − yb)

2

te − tb

Recall that a constant bullet velocity, v, was chosen when training the network
based on virtual bullets; if

∣

∣vrequired− v
∣

∣ is reasonable close to 0, the bullet could
potentially reach target e with the given speed. The angle at which bullet b
should have been fired can then easily be calculated from (x, y)b and (x, y)e.

When training a neural network, the problem of overfittingmust be addressed.
In offline training, a static set of training examples are used repeatedly to train
the network, and there is a risk that the network loses its ability to generalise.
That is, it might not be capable of classifying examples which are not in the
training set. In order to overcome this, a validation set is typically extracted
from the training set, and with regular intervals during training, the network’s
error on the validation set is assessed. A sudden increase in validation set error
is an indication of overfitting, and hence the training should be stopped[Mit97,
p. 110-111].

Aalbot’s targeting module is trained online, so a definitive validation set can-
not be selected before training commences. Although training examples are
added continuously, the risk of overfitting is still present if the earliest added
examples are used over and over. In order to overcome this, only the N newest
examples are used every time a training cycle is performed. A higher degree
of adaptiveness is then achieved as well, because new examples indicating a
change in enemy movement pattern will have greater impact on weight up-
dates. On the other hand, the network will be more susceptible to noisy data.

8.4 Summary

The design of a neural network for targeting has been discussed in the pre-
ceding sections, and the main results are now summarised. In particular the
choice of methods and parameters to test empirically will be stated.

Three target function representationswere considered and preprocessing schemes
appropriate for these were discussed:

1. Predicting one-step-ahead velocity/heading pairs based on a history given
by time, heading and velocity. Time normalisation, scaling and transla-
tion are applied during preprocessing. Network outputs are encoded

70 Summary

quantitatively, i.e. one neuron representing predicted velocity and one
neuron representing predicted heading. The tanh activation function is
used in all network neurons, because outputsmay be negative as a result
of translating data.

2. Predicting one-step-ahead (x, y) enemy position based on time and co-
ordinate history. Time normalisation and scaling is applied during pre-
processing, but not translation; this would contradict the motivation of
using Cartesian coordinates, namely that the enemy’s absolute position
on the battlefield matters. Network outputs are be encoded quantit-
atively, i.e. one neuron representing predicted x coordinate and one
neuron representing predicted y coordinate. The sigmoid activation func-
tion is used in all network neurons.

3. Predicting the angle in which to point the turret in order to hit the en-
emy on its future path. Input is based on a history given by Cartesian
coordinates, as well as the position of Aalbot,

(

x f , y f

)

. The output angle
is encoded categorically, and the softmax activation function is used in
output layer neurons in order to interpret outputs as probabilities. The
sigmoid activation function is used in the remaining neurons. All three
preprocessing schemes should be applied, namely time normalisation,
scaling and translation. The concept of virtual bullets is used for data
collection.

In all cases networkweights will be initialised to random values in the interval
[−1 . . . 1], which is appropriate because network inputs are scaled to the same
interval. An acyclic network structure with three layers (one hidden) has been
chosen.

Four general parameters remain to be found in tests: the learning rate, η, the
momentum,α, the number of input units and the number of hidden units.

Chapter 9

Reinforcement Learning Module

It was decided in Section 7.3 to apply reinforcement learning to the target se-
lection module in Aalbot. This chapter documents the design of such a target
selection module. Each section consists of an explanation of the ideas used
alongside reasoning as to why, they are expected to perform successfully in a
reinforcement learning context. The chapter builds on the basics of reinforce-
ment learning introduced in Appendix B.

9.1 Optimisation Task

The task in reinforcement learning is to optimise the interaction with the envir-
onment, in this case Robocode, over time. The interaction between this module
and the environment is given by a policy, π . Hence the optimisation task is to
learn an optimal policy, π⋆

Aalbot.

Initially a discussion of the goals for a target selection module in Robocode
will be presented, these goals will direct the choice of rewards to be used in
learning π⋆

Aalbot.

9.2 Goals

One goal considered, but rejected, for the target selection module is: “Select
a target such that Aalbot wins the current round”. Using this goal for the target
selection module, a reward can be given whenever Aalbot wins the round.

This goal rests on the assumption that, in case Aalbot has won, it did so be-
cause its target selection during the round was optimal. But that does not
necessarily hold. The possibility of Aalbot choosing a sub-optimal target, but
still winning the round, e.g. due to very skillful targeting, movement or radar
control, does exist. Because winning the round relies on all other modules of
Aalbot, this choice of goal obfuscates the actual process of target selection, and
complicates the assessment of the behaviour of this module.

71

72 Rewards

If the only goal of the target selection module is to win the round, the first
update of the Q-table can only be performed after a round has been completed.
The time factor, and the above mentioned obfuscated target selection process
suggests that a better solution should be pursued.

An alternative goal that has been chosen for the target selectionmodule of Aal-
bot is: “A robot, targeted by the target selection module, is killed”. Using this goal
for the target selection module, a reward can be given whenever the currently
selected target is destroyed.

Consecutive achievements of this goal will ultimately lead Aalbot to win the
round. Therefore, this goal can, in loose terms, be considered as a more fine
grained version of the above goal, “Select a target such that Aalbot wins the cur-
rent round”.

The fact that multiple robots engage on the same battlefield in Robocode, af-
fects the clarity of this goal. E.g. the currently selected target may be killed by
another robot. This can be considered noise in the training of the target select-
ing module, as the target selection module receives a reward even though it
did not kill the target. The learning algorithm is expected to be able to handle
such noise.

9.3 Rewards

The means to assess the policy have been chosen in the form of a goal. Still
it remains to define the means to learn the policy, namely the rewards. This
subsection defines the available rewards during the training of this module.

Initially, we consider an example of a flawed reward scheme. If one were to
develop an entire Robocode robot by using reinforcement learning, one ap-
parent goal to pursue could be “Win the round”. In trying to win the round,
it seems like a good thing to ram other robots, as this produces bonus points,
hence the naive designer chooses to reward ramming as well as winning the
round. However, ramming causes damage to both of the involved robots. The
robot, simply pursuing the highest accumulative reward, could then learn to
pursue ramming as a subgoal without actually achieving the ultimate goal,
namely to win the round. This example illustrate the fact that rewards should
communicate to the robot what it should learn, and not how it should learn it.

Adhering to these considerations, and the goal selected in Subsection 9.2, re-
wards in the target selection module are only granted upon destruction of the
currently selected target. The reward will be a fixed value r.

Data Representation 73

9.4 Data Representation

9.4.1 Input Data

The functionality of the target selectionmodule is to choose a target among the
remaining enemy robots. In order to choose such a target wisely, this module
relies on two types of information: Sensor input, which gives information about
the environment, and internal information, which consists of values calculated
by the other modules of the robots. The chosen set of inputs defines the state
space of Aalbot, which is the set of states that Aalbot can be in.

The sensor inputs to be considered could be the position of enemy robots (rep-
resented by Cartesian coordinates (x, y)), the energy of enemy robots, their
heading and velocity, etc. Sadly, it is not possible to include every possible bit
of information available to the module in the state space of Aalbot for reasons
which will be explained in the following. In Subsection 9.5 the choice of sensor
inputs is made.

The internal information relevant for this module is especially the information
that comes from the targeting module. For each enemy, the targeting module
calculates both an angle, which defines the direction in which to shoot, as well
a probability that states how likely it is for the targeting module to be able to
hit that particular enemy. This could easily turn out to be an important factor,
so the target selection uses the probabilities p1, ..., pn for hitting each of the
other robots,R1, ..., Rn as part of the current state of Aalbot..

9.4.2 Output Data

As the architecture prescribes, the output of this module is a list of wishes.
Those wishes can be abstract wishes to be fulfilled by other modules, or ac-
tuator wishes that are directly converted into Robocode actions. The target
selection module is chosen to be the deciding module regarding aiming and
shooting, therefore the module outputs a list of actuator wishes.

The output from this module is an actuator wish to turn the turret of the robot
a specific angle in order to hit the selected target. The module also outputs a
wish to actually fire the gun with a specified power. The angle and shooting
power is part of the input from the targeting module, designed in Chapter
8, thus limiting the responsibility of this module to merely selecting a target
enemy between viable alternatives.

9.5 States

At first glimpse it seems desirable to calculate Aalbot’s current state simply by
collating all incoming sensor inputs and the different values that p can main-
tain. The number of possible states for Aalbot could then be calculated in the

74 States

following way by using the specified Robocode inputs1, and the calculated
probability p:

n = number of enemies
pos = position {0, ..., xmax} × {0, ..., ymax}
e = energy level [0; emax]
v = velocity [0; vmax]
h = heading [0; hmax]
p = probability [0; 1]

Total number of configurations:

((xmax + 1) · (ymax + 1) · | [0; emax] | · | [0; vmax] | · | [0; hmax] | · | [0; 1] |)n

The main problemwith the above is that the set of states becomes infinite since
for example p ∈ [0; 1] is an infinite set. This is a problem because the con-
vergence of Q-learning relies on each state-action pair being visited infinitely
often[Mit97, p. 382], understood in the sense that over time each action in
all states must be executed with nonzero frequency as the length of the ac-
tion sequence approaches infinity. This is impossible if the number of states is
infinite.

Therefore it is necessary to make some simplifying assumptions about the en-
vironment and behaviour of Aalbot. Sensor inputs must be chosen with cau-
tion, and then the job is to minimise the number of states, so that π⋆

Aalbot can be
learned.

9.5.1 Segmentation

The key technique employed is segmentation. This means to find a mapping
between a large, possible infinite, set to a small set of bins. This way an infinite
set such as the set of possible probabilities can be mapped to a set of three bins,
{unlikely,likely,evident}, using a function like the following:

pbin (p) =

unlikely for p < 0.4
likely for 0.4 < p < 0.9
evident for 0.9 < p

The function pbin could have been defined in many other ways, so it is import-
ant to choose a good definition. What exactly constitutes a good definition
depends on the type of input and what it will be used for. In some cases a high
resolution (i.e. a large number of bins) is required, in other cases a low resol-
ution (i.e. small number of bins) could be sufficient. To make a compromise
between wanting a high resolution while still wanting to keep the number of

1These inputs are not the selected , but serves merely as an example of why not to use all
possible sensor inputs.

States 75

bins low, it is possible to define the mapping function so that the number of
bins for one part of the original interval is higher than the number of bins for
another part of the interval.

The chosen mappings for the probability, energy level and distance are de-
scribed in the following subsections.

9.5.2 Probability from the Targeting Module

As seen in the previous section, p ∈ [0; 1] has to be segmented into a finite,
small set of bins in order to be used with reinforcement learning. By map-
ping each possible value of p into a value pbin ∈ N in a small range, a useful
outcome can be produced. By using the equation pbin = ⌈p ∗ 10⌉ the range
becomes {1, 2, ..., 10}.

9.5.3 Enemy Energy Level

Aalbot receives a reward whenever its current target is killed, therefore it is
desirable that the energy levels of enemies are considered when determining
the current state. If the energy level is not segmented, it is a value e ∈ [0; 200].
If all possible values had to be considered the total number of states would be
infinite. There are two different approaches to alleviate this that seems valid:

The energy level of the enemy robot could be segmented in the same way as
the probability calculation. The positive effect is that the number of possible
values this binned parameter can take is 10 and not 200. On the other hand,
thismeans that it cannot be knownwhich target has the least amount of energy.
It can only be known within which range it resides.

Another approach is to calculate the enemy’s energy relative to Aalbot’s en-
ergy, eAalbot. Then the bins could be defined as follows:

ebin
(

eenemy, eAalbot
)

=

0 for eenemy < eAalbot
2

1 for eAalbot
2 < eenemy < eAalbot

2 for eAalbot < eenemy < 2 · eAalbot
3 for 2 · eAalbot < eenemy

By using this approach the number of bins is even smaller (4), but the major
disadvantage is that it becomes impossible to point out the weakest enemy,
since more than one enemy could have less than half of Aalbot’s energy. Fur-
thermore this mapping say nothing about how close to zero the other robots
energy levels are.

This concludes that some vital information is lost no matter if the first or the
second approach is chosen. Therefore a compromise between the number of
states and loss of information has to be made. The mapping to be used maps
the energy levels into 11 bins using the following function:

76 States

ebin
(

eenemy
)

=

0 for eenemy ≤ 5
1 for 5 < eenemy ≤ 10
2 for 10 < eenemy ≤ 20
...
10 for 90 < eenemy ≤ 200

The bins are chosen so that Aalbot has more fine grained information when
the energy of the enemy is low. With higher energy levels, Aalbot uses a lower
resolution.

9.5.4 Distance to the Enemy

Another aspect that Aalbot must consider in order to learn π⋆
Aalbot is the dis-

tance to its opponents. If two potential targets is within the same range of
energy, Aalbot must have a way to prefer one of them. Once again the sensor
input is segmented into smaller bins. The bin corresponding to a distance
is found using the Euclidean distance, d, within the range 0 ≤ d ≤ 1000.
The range assumes that the battlefield is 800× 600 pixels large. The mapping
function is:

dbin (d) =

⌈

d

100

⌉

This means that there are ten different possible bins.

9.5.5 After-states

The state of Aalbot thus consists of, for each enemy: The probability of aiming
correctly, the energy level of the enemy and the distance to the enemy. The
total number of possible states using the previously described mappings, then
amounts to (10× 11× 10)n = 1.331.000.000 for the number of enemies n = 3.

This number of states is sadly huge, and notmanageable in a reasonable amount
of time within the Robocode limitations. Therefore yet another technique is
employed to reduce the size of the state space, namely so called after-states.

For any given scenario in Robocode, Aalbot knows the probability, energy
level and distance of all enemies. It can then select a target, and after selecting
this target the current state will then be comprised of the probability, energy
level and distance of the currently selected target. That is, we introduce an after-
state. The after-state can always be found from the initial information available
to Aalbot and its chosen action: Aalbot has perfect information about the im-
mediate effect of choosing an action. That effect is simply that the current state
then will be comprised of the values for that target. This reasoning is similar
to the Tic-Tac-Toe example in [Sut98, section 6.8].

Actions 77

Using this new definition of the state space, the total number of possible states
then amounts to 10 × 11 × 10 = 1100 states. This is manageable within the
limitations set by the Robocode framework.

9.6 Actions

The architecture in Chapter 5 prescribes that outputs of modules are repres-
ented as wishes. In Subsection 9.4.2 it is documented that the target selection
module outputs actuator wishes.

The available actions in the target selection module of Aalbot is a one-to-one
correspondence with the wishes it produces. The maximum number of en-
emies in the battlefield is assumed to be five, and thus the set of possible ac-
tions are:

{target enemy n | n ∈ {1, 2, 3}}

Each of these actions can be transformed directly into a valid actuator wish by
replacing n with the angle to turn the turret in order to hit the corresponding
robot. The angle is selected from a list of possible targets, where each action
corresponds to an index in the target list.

9.6.1 Action Selection

The target selection module of Aalbot adapts the probabilistic approach from
[Mit97] for selecting actions. The probabilities for selecting each action are
calculated as:

P (ai|s) =
kQ(s,ai)

∑ j kQ(s,a j)
(9.1)

where k > 0 is a constant, or possibly a variable, indicating how Q-values
should be weighted in the probability calculations, and P (ai|s) is the probab-
ility of selecting action ai from state s . The target selection module of Aalbot
selects actions according to the probabilities given by this equation. To illus-
trate the role of k in the action selection, the following can be stated:

• As k → 0 , the probability of selecting the action with the lowest Q-value
increases.

• If k = 1 every action is equally probable to be selected.

• As k → ∞ , the probability of selecting the action with the highest Q-
value increases.

78 Transition Function

Letting k increase over time will eventually favour exploitation over explora-
tion. In that way, the target selection module will respect its current policy, π
, more strictly as π is optimised. On the other hand, keeping k constant and
low allows for a higher level of adaptability as the target selection module is
frequently challenging the policy, by exploring new (state,action) pairs.

In the training of this module two approaches will be tested with regards to k :

1. let k increase over training epochs.

2. let k be constant.

To define what an epoch is, consider how many actions must be selected to
actually try all actions from all states. Given Equation 9.1, the required number
of action selections amounts to on average:

|S| × |A| × 1

P∀a

where S is the set of states, A is the set of actions and P∀a is the probability
of selecting every action, a , at least once, using |A| action selections. Initially,
when no updates to the policy has been made, a clean Q-table is used and

P∀a = |A|!
|A||A|

. As the policy is updated consecutively, this probability becomes

significantly smaller. However, it is difficult to reason about the exact size of
this probability during training. An epoch is, hence, defined to be the least
known number of updates to the policy, needed to try all actions from each

state, namely |S| × |A| × 1
|A|!
|A||A|

= 14.850 .

The exact values of k , in both approaches, are to be tested empirically.

9.7 Transition Function

The reinforcement learning method presented in Appendix B considers the
case were the learning environment is deterministic. However, the transition
function, δ (s, a), designed for this module is non-deterministic. This means
that choosing a particular action in a given state does not always results in
the same succeeding state. This is due to the fact that the other robots change
the world state all the time. When it is Aalbot’s turn to evaluate again, the
distances and energy levels may have been changed because some of the ro-
bots hit each other, or they moved in a new direction than before, etc. In other
words the value of δ (s, a) can change even though the values of s and a are the
same.

As a result of this, the Q learning method for non-deterministic environments
has been adapted from [Mit97, p. 381].

Summary 79

9.8 Summary

To conclude this chapter, the choices made throughout the design of the target
selection module are presented here.

The goal of the target selection module is “A robot, targeted by the target selec-
tion module, is killed”. Fixed sized rewards are given only when the currently
selected target is in fact killed.

Sensor inputs to this module are chosen to be the distance and the energy level
of enemy robots. The only internal information that will be used is the output
from the targeting module: For each enemy, the probability of hitting it, the
angle to turn the turret and the power to shoot with.

The output from this module is a wish describing the angle which the turret
should be turned in able to hit the chosen target and a wish to fire the gunwith
a specific strength.

A state is comprised of the probability of hitting the currently selected target,
the energy level of the currently selected target and the distance to the cur-
rently selected target. Total number of states amounts to 10× 11× 10 = 1100.

Three actions has been chosen. Each action designating a wish to select one of
the three enemies as the currently selected target.

A probabilistic approach has been chosen for action selection. An explore vs.
exploit variable k will be subject to experiments, in terms of defining this k as
a constant, or by letting it increase over epochs of training.

Chapter 10

Genetic Programming Modules

In Chapter 7 it was chosen to apply genetic programming to the movement
and radar controlling modules of Aalbot. This chapter first documents a cus-
tomised approach to genetic programming taken to accommodate the Rob-
ocode framework. Subsequently, genetic programming is applied to the two
modules in question. The chapter builds on the terminology and principles of
genetic programming introduced in Appendix C.

10.1 Customised Approach

This section gives the overall design of a genetic programming framework
created by the project group to support genetic evolution ofmodules in Aalbot.

More accurately, the following areas are to be elaborated upon:

• How an individual in the population is represented.

• How the initial population is generated.

• How the fitness of an individual is measured.

• Which termination criterion is used.

• And finally, which of the genetic operations presented in Appendix C are
used, and which alternatives are considered.

In addition some of these areas might require exogenous parameters, such as
the population size, ratios for determining how large parts of the population a
certain genetic operation should be applied to between generations etc.

81

82 Customised Approach

10.1.1 Representation of Individuals

As known, genetic programming evolves a population of individuals over a
number of generations. In regards to Aalbot, an individual is defined more
precisely as a program constituting a particular module, which is chosen to be
developed using genetic programming.

The representation of the programs to be evolved is chosen as in most other ex-
amples of genetic programming. According to the common literature [Koz92,
p. 71] on the field, using parenthesised Lisp-like expressions to represent the
programs is a widely used practice. Lisp expressions have the all-important
benefit of being direct representations of their own parse trees, which makes
the genetic operations manipulating parse trees directly applicable without
generating syntactically invalid programs.

The various structures and operators of genetic programming are implemen-
ted in Java, and therefore the main representation of an expression is chosen
to be a tree structure built of Java objects, resembling the parse tree of the ex-
pression. It is not necessary to manually write expressions, which makes the
construction of a parser superfluous, and hence a parse tree is a sufficient rep-
resentation of an expression. This parse tree can easily be serialised in Java and
saved to a file that can be read by a robot for interpretation. An auxiliary print
function is useful though, to convert the parse tree into a Lisp-like program
string, suitable for visual inspection of e.g. the best-so-far individual.

A small language is designed to fit the application domain, and can be con-
sidered a variant of Lisp. An interpreter for the language is constructed to
handle single expressions using an eval/apply cycle as described in [ASJ96,
section 4.1]. The basic idea of this eval/apply cycle is to evaluate a function,
by first evaluating its arguments recursively, and secondly applying the func-
tion to the values obtained from this evaluation.

A program written in this language is basically one large expression, which is
possibly composed of many sub-expressions. An expression can refer to func-
tions, special forms and terminals, including integer constants, world state
data and sensor input received from the environment of Aalbot. Functions
and terminals must evaluate to real values, thus ensuring the property of clos-
ure between the function and terminal set.

The syntax of the language is expressed in the BNF grammar below.

Customised Approach 83

〈Exp〉 ::= 〈Function〉
| 〈Special f orm〉
| 〈Terminal〉

〈Function〉 ::= (+ 〈Exp〉 〈Exp〉)
| (− 〈Exp〉 〈Exp〉)
| (∗ 〈Exp〉 〈Exp〉)
| (/ 〈Exp〉 〈Exp〉)
| (random 〈Exp〉)

〈Special f orm〉 ::= (sequence 〈Exp〉 〈Exp〉)
| (iflessthan 〈Exp〉 〈Exp〉 〈Exp〉 〈Exp〉)

〈Terminal〉 ::= 0 | 1 | 3 | 5 | 10 | 20 | 30 | 50 | 180 | 360
| World state data
| Sensor input

The first four functions are the usual arithmetic operators with the minor ex-
ception that the division operator is changed so that division by zero yields
zero as result. The random function generates a random integer in the interval
ranging from 0 to the indicated limit.

Note that the last two clauses of 〈Terminal〉 are described informally here, as
they vary depending on the module. Hence these terminals will be specified
more accurately later. In addition, multiple Robocode functions are added to
the language, but as with the terminals these are also specific to each module.

Two special forms, which are expressions that require a special evaluation order,
are included in the language. The sequence expression is evaluated sequen-
tially by evaluating the first expression before evaluating the second expres-
sion. The value of the entire expression is given by the result of evaluating the
last expression.

The semantics of the iflessthan special form is as follows. The first two
expressions are evaluated sequentially, and if the value of the first expression
is less than the value of the second expression then the third expression is
evaluated, else the fourth. The value of the whole expression is thus the value
of either the third or fourth expression.

No further special forms or module independent functions are included in the
language, as functions such as if-greater-than or similar would not make the
language more expressive.

More advanced features of Lisp, such as environments, loops, lists, lambda
functions etc. have been left out to limit the search space of possible expres-
sions to be considered by the genetic programming process.

Choosing the explained Lisp-like representation of individuals ensures that
the implementation of genetic operators are simplified. Still a relatively high

84 Customised Approach

Comp. unit 1

Migration

Aalbot

GP Module

Deme 1

Individual

Pass individual

Comp. unit N

Return fitness

Gen. 0

Breed new
generation

Evolution
controllerDeme 1

Gen. X Return best
individual

Initiate
evolution

to Aalbot

value

Deme N
Gen. 0

Figure 10.1: Overview of the distributed evolutionary framework employed
in this project.

level language is preserved, making it easy to understand the meaning of a
program from its parenthesised string form. The interpreter is significantly
easier to implement than writing a compiler to convert parse trees into byte
code. The price paid is a slight decrease in execution speed.

10.1.2 Distributed Evolution

The amount of computational resources required by the process of genetic
evolution is without doubt very large, mainly because the fitness of each indi-
vidual has to be measured between every generation. For this reason, a frame-
work is designed to allow distributed evolution of the genetic programming
modules in Aalbot. The approach taken is to divide the population of indi-
viduals into demes (small local populations), which are to evolve separately
on different computational units. Individuals can migrate, i.e. move from one
deme to another, which minimises the possibility of a deme being dominated
by individuals with undesirable characteristics.[Mit97, p. 268]

The distributed evolution framework is presented in Figure 10.1. N computa-
tional units each evolve a deme of individuals and are controlled by the evolu-
tion controller, which has the responsibility of initiating and stopping the entire
evolutionary process. On the left-hand side of the figure, the details of the first
evolutionary steps on a single computational unit are illustrated. The evolu-
tion controller initiates the evolution of a deme by sending the computational
unit a message containing relevant parameters such as deme size, the func-
tion and terminal set to be used, the fitness function etc. The initial generation
0 is then generated randomly to contain the required number of individuals,
each of which is tree structure of Java objects representing an expression, as
described in the previous section.

Customised Approach 85

As shown in the figure, an individual (represented by the dot) is passed to
the genetic programming module of Aalbot. The individual is then interpreted,
while Aalbot takes part in a simulated battle against a number of opponents.
Once the battle is over, some fitness value is calculated depending on how
well Aalbot performed in the battle. This value is returned and stored with
the corresponding individual for later retrieval. When the fitness values of all
individuals have been calculated, a new generation is bred by applying the
genetic operations, which also implies that some individuals migrate to other
demes in the system. The migration operator is implemented by serialising
the object representing the individual and sending it to the destination deme.

At any time, the evolution controller can request the best-so-far individual
from a deme, and it can then decide whether to stop or continue the evolution
depending on the termination criterion used.

10.1.3 Generation of Initial Demes

The initial demes are generated randomly, thus beginning the evolution with
broad and diverse populations of individuals. Two methods described in
[Koz92, p. 92] for generating a random parse tree representing an individual
are used. Both methods employ a minimum and maximum allowed depth of
the tree, which are initially chosen to be respectively 2 and 6 as suggested in
[Koz92, p. 93]. By choosing a minimum depth parameter of 2, the occurrence
of trivial and useless individuals such as a tree only consisting of a single ter-
minal is avoided.

The so called grow method grows trees of depths between the minimum and
maximum specified depth. It randomly selects a function from the function
set and designates it as the root node of the tree. For each of the root function’s
arguments a function is again chosen randomly from the function set and in-
serted appropriately in the tree. From this point on an element from the union
of the terminal and function set is chosen to further grow the tree until all leaf
nodes are terminals or the maximum depth is reached, in which case the final
selection of leaf nodes is of course restricted to the terminal set.

The othermethod for generating a random tree is the fullmethod, which works
similar to the grow method except that it always produces trees with the max-
imum allowed depth on all branches.

According to [Koz92, p. 93] creating a diverse initial population (or deme)
having a wide variety of sizes and shapes can be done using a "ramped half-
and-half" method. The method prescribes, that a depth parameter ranging
between 2 and the maximum specified depth should be used. As the max.
depth parameter is 6, 20% of the population should be created with a depth
of 2, 20% with a depth of 3 and so on. For each value of depth, half of the
individuals should be created using the growmethod and the other half using
the full method.

The total number of individuals to be randomly generated for the initial pop-
ulation in a non-distributed system, i.e. the population size M, is typically

86 Customised Approach

chosen to be around 500 as proposed in [Koz92, p. 116]. As the evolutionary
framework designed for Aalbot is distributed, it is chosen to generate initial
demes of 100 individuals. It is impossible to do any sensible reasoning on
whether 100 is an optimal choice, and it will thus be tested whether generat-
ing e.g. only 50 individuals per deme will produce the same results.

10.1.4 Fitness Measure

Between generations the fitness of each program in a dememust be measured.
A module consisting of some expression taken from a population must be in-
corporated into a pre-made robot, where all other modules are functioning.

The fitness of a robot is chosen to be the number points scored in a Robocode
battle of 10 rounds, plus an amount of bonus points if the robot is the last
survivor. The fitness of a robot should ideally be influenced by some spe-
cific measure of howwell the module developed by genetic programming per-
forms and not just the overall performance of the robot. For example, the radar
module’s performance could be measured by taking into account the average
time between an enemy is scanned by the radar.

3 enemies with different skills and behaviours are selected to battle against the
robot, which fitness needs to be measured. The enemies are selected in a way,
such that the module performs well in the general case, and not only against
specific types of opponents. Obeying this requirement, there is no need to
evaluate the fitness of a robot over a number of fitness cases, which would
slow down the process unnecessarily.

10.1.5 Termination Criterion

No strict termination criterion will be specified, but instead a loosely defined,
yet acceptable time bound determines when to stop breeding a deme of in-
dividuals. The method of registering the best-so-far individual found from
generation to generation will be used, though the usual specification of the
maximum number of generations G is left out. Thus it is possible to simply
run the process for as long as possible within the restriction of the deadline of
this project. Stopping the process at any state is possible, since the best-so-far
individual from each generation is always stored.

10.1.6 Genetic Operations

This subsection presents the genetic operations used to generate new demes of
individuals. The individuals are chosen from the deme using fitness-proportionate
selection favouring individuals with higher fitness as described in Appendix
C.

It is chosen to apply the mutation operator, which works simply by choosing
a random node in the individual and replacing the sub-tree starting at this

Movement Module 87

node with a new randomly generated tree. Many different types of cross-over
operations exists — for example 2-point cross-over, context preserving cross-
over or variants where an individual is recombined with itself (i.e. subtrees are
swappedwithin the same individual). However, it is chosen to initially restrict
the operations to the simple 1-point cross-over as described in Appendix C.

The reproduction operator will be used to select individuals exhibiting a high
fitness from a deme and copy these directly into the following generation. This
operator will be used relatively few times compared to the mutation and cros-
sover operations, as it imposes a risk of premature convergence. The migra-
tion operator is comparable to the reproduction operator, except that it copies
individuals between demes residing on different computational units.

The operators are given the following probabilities of being chosen in the pro-
cess of breeding a new generation.

• Crossover: 60%

• Mutation: 30%

• Reproduction: 5%

• Migration: 5%

In other words, the resulting generation created with operations having these
probabilities should contain a number of individuals, of which roughly 60%
were created using crossover, 30% using mutation etc.

10.2 Movement Module

The movement module is responsible for dictating a movement strategy for
Aalbot leading it to victory. The module has to be highly aware of the prop-
erties of the environment, and will thus depend on the information received
from the world state component and the sensor inputs. The purpose of the
module is to test whether a machine learning technique can develop a move-
ment controlling program, that performs better than the anti-gravity move-
ment technique, which was described in Subsection 10.1.1.

As prescribed by themethod of genetic programming, the first step is to identify
the terminals, that have relevance to the problem. The terminals are generally
speaking sensor inputs, world state variables or wishes from lower layers. Fol-
lowing is an expansion of the grammar introduced in Subsection 10.1.1, with
the terminals assumed to be significant in the construction of a movement con-
trolling program.

88 Radar Module

〈Terminal〉 ::= enemyCount

| enemyN_x
| enemyN_y
| enemyN_heading
| enemyN_distance
| aalbotHeading

| aalbotHealth

| currentTime

Note, that each of the enemies is given a unique number, denoted by N in
the above grammar. To exemplify, the terminal enemy3_distance holds the
distance from Aalbot to the enemy identified by the number 3. Furthermore,
enemyCount gives the number of enemies currently on the battlefield, enemyN_x
and enemyN_y gives the x and y coordinates of enemy number N, respectively.

As the next step, the functions controlling the movement of the robot is spe-
cified. They are all named after the corresponding methods in the Robocode
API, and hence their functionality should be known from Chapter 1.

〈Function〉 ::= (ahead 〈Exp〉)
| (back 〈Exp〉)
| (turnRight 〈Exp〉)
| (turnLeft 〈Exp〉)
| (stop)
| (resume)
| (execute)

When an expression is interpreted each of the above functions should produce
a wish representing the desired movement and add it to the layer’s ordered
wish list.

10.3 Radar Module

In Subsection 1.2.1 a number of different strategies for controlling the radar
were presented. Exactly which strategy to employ depends on many factors,
i.e. the number of enemies, their positions etc. The main purpose of the radar
module is to keep the fading memory map, containing information on the po-
sitions of the enemies, as updated as possible. The hope is to find a good
strategy that will reduce the time spend between scanning each of the en-
emies. Genetic programming will be applied to the problem of finding the
best overall radar controlling program, as no satisfying control protocol has
been identified.

Following is a list of the terminals which are assumed to be relevant for the
radar module:

Summary 89

〈Terminal〉 ::= enemyCount

| enemiesSpotted

| enemyN_x
| enemyN_y
| enemyN_heading
| enemyN_distance
| enemyN_lastSeen

The following functions controls the radar, and are hence relevant to the radar
module:

〈Function〉 ::= (turnRadarLeft 〈Exp〉)
| (turnRadarRight 〈Exp〉)
| (execute)

10.4 Summary

This chapter has presented the customised approach taken to genetic program-
ming. Terminals and functions have been identified for the movement and
radar module, which are to be developed using genetic programming. Many
choices regarding parameters, fitness measure, generation of initial demes etc.
have been made based on both experience reported by others and on rational
assumptions. Several tests will hence reveal if the choices made were good,
and will provide the opportunity of reconsidering and changing the paramet-
ers to achieve better performance.

The following list summarises the parameters of the genetic programming
framework, that can be altered in a test situation:

• More advanced features such as loops, lists, lambda functions could be
added to the language.

• The number of individuals in a deme.

• The terminal and function set depending on the module. Some elements
are perhaps irrelevant, while others might be missing.

• The genetic operations used for breeding new generations, and the prob-
abilities given to each of them.

Part III

Evaluation

91

Chapter 11

Neural Network Evaluation

In the following, an evaluation of the neural network module used for tar-
geting is given. This chapter starts by presenting the overall results achieved
from informal tests of each of the three methods listed in Section 8.4. One of
these methods is then chosen as subject for thorough testing, and the test en-
vironment and performancemeasure are discussed. The performancemeasure
section includes a discussion on how the network error evolves over time.

The following list of parameters have been selected for empirical testing – the
numbers indicate the values used during initial tests:

• Learning rate, η = 0.3

• Momentum,α = 0.3

• History size, e.g. number of (x, y) pairs is 5

• 5 hidden neurons

The purpose of the tests is to get insight into the workings of the neural net-
work, but also to determine the values of each parameter that lead to the best
targeting performance. However, it is impossible to perform an exhaustive
test of all possible parameter combinations. Therefore it is assumed that an
optimal value for one parameter will remain optimal independently of the re-
maining parameter values. That is, only one parameter will be varied in each
test. The default values indicated in the list above will be used for parameters
which are held constant.

Each parameter test will be discussed in the respective sections below, and the
chapterwill concludewith general comments on issues regarding the targeting
module.

11.1 Choice of Method

Because of time restrictions only one of the three overall approaches to neural
network targeting has been chosen for thorough testing. The choice is based

93

94 Choice of Method

on initial informal tests through which the method likely to perform the best
is chosen.

The third approach predicts the turret turn angle in a single feed forward cycle
based on an enemy (x, y) history and the position of Aalbot. No immediate
success was achieved with this approach: Although the network error con-
verges to a reasonable low value, the network fails when predicting angles
based on unseen inputs. That is, it does not generalise. There are a number of
possible reasons for this:

• The network is overfitting on its training data, which might indicate that
there are too many weights in the network or that too many training
cycles are applied at each of the robot’s turns.

• Insufficient training data are collected. Recall that training data are col-
lected by means of virtual bullets, and that a fixed bullet speed is as-
sumed. Possible virtual bullet hits are only calculated when a robot pos-
ition is sampled, and a robot may have moved a large distance (typically
more than 100 pixels) between successive samples. Even though a vir-
tual bullet could have hit the enemy in between these samples, it may
not be able to hit within a radius, r, of the sampled position. In this case
the virtual bullet will be discarded, and no training example will be re-
corded.
In the initial tests only approximately 50 training examples were collec-
ted in the first round; considering the complexity of the prediction task,
this number is too low. One solutionmight be to experiment further with
the radius threshold r.

Because of these problems, further training using the third approach will not
be prioritised. This introduces a problem, as only the third approach allows for
a direct measure of network certainty, which is required in the target selection
module. Instead of measuring network certainty based on categorical network
output encoding, the certainty of hitting a target is therefore calculated based
on the latest recorded error of the corresponding neural network. Each cer-
tainty, p ∈ [0; 1], is calculated so that the sum of certainties for all targets is 1.
Although this does not give an definite certainty of a network output, it is a
reasonable alternative to discarding the certainty factor all together.

The first and second approaches are based on one-step-ahead prediction of
heading/velocity pairs and (x, y) pairs, respectively, and they construct the
expected enemy movement path from a list of these pairs. In contrast to the
third approach discussed above, both of these have given reasonable results
during the initial tests. These tests also imply that the (x, y) based approach
is superior to the heading/velocity approach, especially for enemies which
move in the same area of the battle field; however it also generalises readily
when facing enemieswhichmove all over the battle field. Therefore the second
approach based on a (x, y) history is chosen as a basis for further testing, which
is the subject of the rest of this chapter.

Test Environment 95

11.2 Test Environment

Ultimately the neural network targeting module must perform well together
with all other modules in Aalbot and should assist in achieving the goals set
forth in Chapter 4. Testing the targeting module together with other modules
will, however, complicate the interpretation of the neural network perform-
ance. Therefore the module will be tested in a test robot with little other func-
tionality than targeting: the test robot immediately moves to one of the arena
walls, after which it does nothing but targeting and shooting.

Only one enemy will be present and this enemy must not be chosen from the
robots used for the final evaluation of Aalbot, as this would bias the network
parameters to work especially well for these. Instead the sample.SpinBot
robot, which moves in small circles, is used, but with a few modifications:

• Shooting functionality is removed, as the test robot would otherwise be
destroyed too fast (because it does not move).

• SpinBot moves in very small circles, so the radius of the circle is in-
creased in the the modified version. The radius is chosen in order to
ensure that the enemy does not repeatedly move over the exact same
circle, but inevitably hits a wall and is forced to change trajectory. This
is important when evaluating the (x, y) based history approach, because
the network’s ability to generalise over unseen coordinate sets would
otherwise not be reliably tested.

It is assumed that network parameters found to work well against this mod-
ified version of SpinBot will also work well against the robots used in the
final evaluation of Aalbot.

11.3 Performance Measure

Aperformance measuremust be chosen in order to evaluate how different net-
work parameters influence the ability of the targeting module to hit an enemy.
In off-line training tasks a validation set (or possibly a test set) often serves
this purpose. Since no validation set is available, one might simply evaluate
the network’s performance based on the lowest network error over the train-
ing set during the course of training.

To investigate this idea, consider the two graphs in Figure 11.1. The top graph
shows how the error evolves during the initial training cycles. The key to ex-
plaining this behaviour is that training data is added dynamically to the train-
ing set, and at the first training cycles only one training example is available.
Therefore the error rapidly decreases from the initial error determined by the
random initial network weights. After approximately 80 iterations new train-
ing data is added, and consequently the network error grows because weights

96 Performance Measure

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

50 100 150 200 250 300 350 400 450

E
rr

or

Cycles

Error as a function of number of cycles

Error/Cycles results

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

500 1000 1500 2000 2500 3000

E
rr

or

Cycles

Error as a function of number of cycles

Error/Cycles results

Figure 11.1: Network error over time. The top graph shows the error in the
cycles 10 to 480, while the bottom graph shows the error over a larger inter-
val. With the settings used in this test, approximately 6500 training cycles are
completed within the first round in Robocode.

Learning Rate 97

have not yet adapted to the new examples. The error then slowly decreases
until new training data is added. This behaviour repeats until cycle 360 is
reached: Here the impact of added training data diminishes, because the net-
work is starting to generalise over the training data.

The bottom graph of Figure 11.1 shows the network error from the same test
case, but over a larger number of training cycles. The network error peaks at
cycles 360, 800 and 1450, after which the error stabilises at a low value. The
sudden growth in network error at these positions are likely to be caused by
SpinBot changing its trajectory after hitting a wall, which means that the net-
work experiences input data from another area of the battle field. However
the height of these peaks decreases rapidly with the number of training cycles,
suggesting that the network is capable of generalising over specific enemy loc-
ations.

To get the intuition of the error’s magnitude, recall that x and y coordinates are
scaled to the range [0; 1]. The maximum value of an x coordinate is 800, hence
the error in pixels is typically between 1 and 10. Although this error is accu-
mulated overmultiple network feed forwards, it is still reasonable considering
the dimensions of a robot.

The above investigation of the network error over time provides interesting in-
sight on how the network works, but is of little use when measuring targeting
performance of the network. The lowest recorded error would probably occur
in the initial cycles, and this does not provide any indication of overall per-
formance. Instead a more direct performance measure will be used, namely
the bullet damage points rewarded to the test robot by the Robocode system
over 5 rounds. This measure is not ideal either, because it is not a direct meas-
ure of how many bullets hit their target – bullet damage is also affected by
bullet power. However this measure will still give a good overall picture of
network performance. To put the bullet damage numbers presented in the fol-
lowing sections into perspective, note that the targeting module scores in the
order of 60 bullet damage points on an untrained network.

11.4 Learning Rate

The learning rate, η, influences how much network weights are adjusted at
each iteration of the backpropagation algorithm. Figure 11.2 shows how this
parameter affects the targeting ability of the test robot.

As expected, very high learning rates degrade the performance of the targeting
module. The reason is that networkweights are adjusted such that the network
error oscillates around a local minimum. However there are also high values
of η where the targeting performs reasonably well, e.g. η = 15.5 where a
score of over 200 is achieved. The large performance difference between e.g.
η = 17.5 and η = 16.5 can be explained by the illustration in Figure 11.3. Case
R corresponds to η = 16.5 where the error oscillates between R1 and R2 and
never gets closer to the local minimum. Case S corresponds to η = 17 where

98 Momentum

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

B
ul

le
t d

am
ag

e

Learning rate

Bullet damage as a function of learning rate

Bullet damage/Learning rate

Figure 11.2: Bullet damage as a function of the network learning rate.

the initial value of w makes it possible to reach a local minimum, S1, with the
step size dictated by η.

The graph indicates that a learning rate should be found in the interval [0; 2],
so a test with η-values in this range has been run. Very low values result in
slow convergence, and the targeting performs bad; the optimal value to be
used in Aalbot has thus turned out to be η = 0.3.

11.5 Momentum

Momentum can have the effect of guiding the gradient search through a bad
local minimum, but it can also have the opposite effect of leading the search
through a global minimum. It is therefore difficult to reason about the value
of the momentum parameter,α. Figure 11.4 shows how the momentum para-
meter affects the targeting performance of the neural network. Apparently
α = 0 gives the best results, meaning that no momentum is used at all. Hence
no momentum is used in Aalbot.

One reason for the poor results at high momentum values could be that net-
work adaptiveness is decreased, as new training examples have less effect on
weight updates. Furthermore, at momentum values over 1, the weight up-
dates are performed in much larger steps – these steps might be too large for
the network error to converge at a local minimum. A decrease in learning rate
might compensate for this but has not been attempted in the test.

Momentum 99

R2

S2

w

E (w)

R1

S1

Figure 11.3: Illustration of the network error’s position on the error surface in
the hypothetical case of one network weight, w. Two training cases, R and S,
are represented. R1 and R2 are errors from training case R, while S1 and S2
are errors from training case S. Lines connect errors from successive training
cycles in the same training case, and their length imply the size of the train-
ing rate, η. Even though η is almost identical in the two cases, the network
converges to a lower error for case S.

0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7

B
ul

le
t d

am
ag

e

Momentum

Bullet damage as a function of momentum

Bullet damage/Momentum

Figure 11.4: Bullet damage as a function of network momentum.

100 History Size

100

150

200

250

300

350

400

450

500

5 10 15 20 25 30 35 40

B
ul

le
t d

am
ag

e

History size

Bullet damage as a function of history size

Bullet damage/History size

Figure 11.5: Bullet damage as a function of the history size. Vertical lines show
the standard deviation over two runs of the same test case.

11.6 History Size

The history size, N, refers to the number of (x, y) pairs used for prediction of
a future position, so the number of network inputs is 2 · N. Figure 11.5 shows
how the test robot’s performance varies with N: At history sizes larger than
14, the performance starts to degrade. The reason for this is two-fold. First
preprocessing is more difficult at larger history sizes, because training data is
discarded if the time between successive samples varies too much. In these
cases time normalisation does not work well. The second reason follows from
the curse of dimensionality – the higher the dimension of the search space, the
more training data and training time is required in order to perform well.

The history size is probably the parameter which depends most on the ro-
bot whose movement path is to be predicted. To give the intuition behind this
statement, consider a human predicting the future positions of a robot, r. If r al-
waysmoves in circles, two (x, y) pairs would be enough for predicting the next
position of this robot. On the other hand, if r follows a sine curve, a longer his-
tory would be required to reliably predict a future position. This explains why
a history size of 2 is sufficient for predicting the modified SpinBot, which
moves in large circles most of the time.

A history size of 8 is chosen because this works well in the test case, the devi-
ation is low and can also be expected to give good results for robots with more
complex movement patterns than SpinBot.

Number of Hidden Neurons 101

11.7 Number of Hidden Neurons

Surprisingly targeting performance has shown to be insensitive to the number
of hidden neurons in the network for values between 4 and 200 – values less
than 4 only give slightly worse performance. Therefore no graph is shown for
this test case, and 4 hidden neurons are chosen for Aalbot. This results in the
simplest network which still performs well (approximately 450 bullet score
points).

One might expect a network with many hidden neurons to overfit easily, but
this is clearly not the case in this test. The reason might be that the training set
changes dynamically, so the network has no opportunity to learn all training
examples before they are removed from the training set to make room for new
examples. The test robot naturally gets slower as the number of hidden neur-
ons increases, but still it does not miss any turns, even when training with the
maximum number of 200 hidden neurons used in this test.

11.8 Conclusion

Results from neural network training have been discussed in the preceding
sections, which has yielded insight into the inner workings of the neural net-
work. Parameter values which are likely to result in the optimal targeting
performance have been chosen, namely a learning rate η = 0.3, momentum
α = 0.0, history size of 8, and 4 hidden neurons.

The optimised test robot has a typical bullet damage score against themodified
SpinBot of almost 500. This is 7- 8 times better than the score achieved using
random targeting, which is satisfactory. A visual inspection of a battle also
reveals that the test robot performs well after having trained through the first
round.

Chapter 12

Reinforcement Learning
Evaluation

This chapter documents the results of using reinforcement learning in the tar-
get selection module of Aalbot. First the test environment is discussed and
a choice of testing parameters is made, especially regarding the selection of
actions. Following this, the actual evaluation is carried out based on two ap-
proaches. The first approach examines how the maximum cumulated reward
progresses over time, which establishes the correctness of the implemented
Q-algorithm. The second approach goes into more detail on how the learned
policy chooses actions and seeks an optimal value of k through empirical tests.

In order to test the performance of the target selection module used in Aalbot,
the neural network based targeting module must perform reasonably well.
Reasonably well, in this case, means that the module is able to produce a qual-
ified guess on the angle to turn the turret, the power to shoot with and the
probability of hitting for at least two of the targets on the battlefield. Thus
such a behaviour from the targeting module is assumed throughout the per-
formance tests.

12.1 Test Environment

Different approaches for selecting an action from the Q-table, or more spe-
cifically varying a constant k, were proposed in Chapter 9. Due to the time
restrictions in this project, only one approach is tested. If the constant k from
equation 9.1 on page 77 is chosen to increase over time many training epochs
have to be carried out before the action selection relaxes its tendency to ex-
plore. Testing with an increasing k is skipped, and hence the action selection
method is limited to a constant value of k during each training case.

In order to choose a reasonable value of k, some considerations about the con-
sequences of different k values have to be made. In order to do so, an arbitrary
entry in a Q-table, (4.7, 8.6, 6.4), has been considered, associating actions with

103

104 Performance Measure

expected cumulative rewards. As an example the entry 4.7 is interpreted as
the expected cumulative reward when choosing action 1, denoted a1 in the
table below, from the state s. Each action corresponds to selecting a target
in Robocode. The consequences of varying k are illustrated in the following
table of probabilities, and the reader is referred to equation 9.1 on page 77 for
information on how to calculate the table values:

p (ai|s) weighted k = 0.5 k = 1.0 k = 1.1 k = 1.2 k = 1.5

Qa1 = 4.7 0.239 0.727 0.333 0.276 0.227 0.127

Qa2 = 8.6 0.436 0.049 0.333 0.400 0.463 0.619

Qa3 = 6.4 0.325 0.224 0.333 0.324 0.310 0.254

The column weighted is the weighted probability of choosing the different ac-
tions if k was removed from the equation. The table indicates that values of
k in the interval]1.0; 2.0] are viable choices. A value of k = 1.1 ensures a
certain degree of exploration, and values of k = 1.5 and upwards tend to
suppress exploration in favour of exploitation. The target selection module
in Aalbot uses three different values during performance tests of k, namely
k = { 1.1, 1.2, 1.5 }.
The target selection module is trained in melee battles against 3 other robots.
The 3 training opponents are chosen to be sample.Crazy,sample.SpinBot
and sample.MyFirstRobot, because these robots do not perform exception-
ally well. Data are collected during training to facilitate the analysis of the tar-
get selection module’s performance. Training against more advanced robots
could be expected to lengthen the training process, as no rewards will ever be
given if Aalbot is the first robot to be destroyed. However, training against
more advanced robots would accordingly prepare Aalbot for the final tests
against the robots selected in Chapter 4.

12.2 Performance Measure

Two different performance measures are used to test the target selection mod-
ule of Aalbot:

• The cumulative reward.

• The action selection pattern.

The first measure will give an indication of whether or not the implementation
of reinforcement learning used in Aalbot is correct. Maximising the cumulat-
ive reward is the sole purpose of reinforcement learning, and the applied Q-
learning algorithm should ensure this. The test itself is conducted by storing
the cumulative reward obtained during each round of Robocode.

The Cumulative Reward 105

The second performance measure is more expressive with regards to the ac-
quired policy of the target selection module. Aalbot selects many targets dur-
ing a Robocode battle. Each time a target is selected data are collected about
that target – relative to the targets Aalbot did not choose. That is, for each
target Aalbot selects, it stores three pieces of information;

• Probability. The target chosen had highest, lowest or medium probabil-
ity to get hit.

• Energy. The target chosen had highest, lowest or medium energy.

• Distance. The target chosen had highest, lowest or medium distance to
Aalbot.

This information, gathered over successive rounds, indicates what sort of se-
lection scheme the target selection module has learned. In other words, it il-
lustrates the learned policy.

Note that, due to the discrete nature of the data and the applied segmentation
in Subsection 9.5, it is not always possible to determine which of two targets
has e.g. the highest energy. In such cases both targets are considered to have
highest amount of energy.

The latter performance measure strives to put the target selection module and
reinforcement learning into perspective by applying the bullet damage score,
from Robocode, as a measure of performance. The results will guide the choice
of k to be used in the final test setup against the robots selected in Chapter 4.

12.3 The Cumulative Reward

The cumulated reward over time obtained by the target selection module has
been collected over 500 rounds. These cumulated rewards express how many
points the target selection module collects as it moves through different states
in the Q-table.

The cumulated rewards of course varies with the number of selected actions
during a round, which exactly amounts to the number of turns in a round of
Robocode. Hence, longer battles can be expected to result in greater cumu-
lated rewards since more Q-table entries are visited. However, as Figure 12.1
illustrates these fluctuations in round time do not affect the graph consider-
ably.

From Figure 12.1, it is clear that the Q-values of the states visited by the target
selection module, given by the choice of target, increase over each round of
Robocode.

106 The Action Selection Pattern

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 50 100 150 200 250 300 350 400 450 500

C
um

ul
at

iv
e

re
w

ar
d

Robocode rounds

Cumulative reward as a function of Robocode rounds

Cumulative reward/Robocode rounds

Figure 12.1: The cumulated rewards over Robocode rounds.

12.4 The Action Selection Pattern

This performance measure is used to examine the policy that the target se-
lection module has learned using different compromises between exploration
and exploitation. This section presents the results of the individual perform-
ance measurements obtained using the values, k = { 1.1, 1.2, 1.5 }, as de-
scribed in Section 12.1. This measure allows for comparing the learned policy
with an intuitively devised optimal policy outlined by three primitive rules.

1. Choose a target with a lower energy level above targets with higher en-
ergy level.

2. Choose a target closer to Aalbot over those farther away.

3. Choose a target that is more probable to be hit over any other targets.

The test were conducted by, for each value of k, collecting data from 20 rounds
starting with a Q-table of all 0.0 entries. These initial rounds of testing were
then followed by 100 rounds without any data collection, but of course, still
optimising the target selection policy. Finally, Aalbot fought another 20 rounds
this time collecting data again. The collected data were used to produce the
graphs in Figure 12.2, Figure 12.3 and Figure 12.4.

It must be mentioned that selecting the medium values of probability, energy
and distance happens seldomly, since the targeting module rarely produces
more than two possible targets, and a third target is needed in order to pick
this value.

The Action Selection Pattern 107

0

10

20

30

40

50

60

70

80

90

100

min med max min med max min med max min med max min med max min med max

F
re

qu
en

cy

Energy, distance and probability

Target selection (minimum, medium, maximum) for k = 1.1

Energy (First 20 rounds)
Energy (Last 20 rounds)

Distance (First 20 rounds)
Distance (Last 20 rounds)

Probability (First 20 rounds)
Probability (Last 20 rounds)

Figure 12.2: Starting with an empty Q-table and a value of k = 1.1, this fig-
ure illustrates the policy seen over the first and last 20 rounds of measuring
performance.

As illustrated in Figure 12.2, the acquired policy seen over the first 20 rounds,
using a value of k = 1.1, is not able to decide whether to prefer targets close to
or far from Aalbot. However it tends to choose targets that have either a low
energy level or a high probability of being hit.

The acquired policy seen over the last 20 rounds seems equally likely to choose
targets with the highest and the lowest distance. But contrary to the initial
rounds, the probability is weighted very highly in this policy, and is actually
the most important factor. Surprisingly the policy no longer favours targets
with the lowest energy level over highest. This could easily be caused by the
high exploration probability, which means that Aalbot often tries new actions
and thereby a pattern cannot be seen.

Increasing k to a value of 1.2, the policy seems to choose its targets more or less
randomly over the first 20 rounds. No factor stands out as very important, but
targets close to Aalbot are chosen a bit more frequently than others.

Seen over the last 20 rounds, the policy appears more adapted. Targets with
the lowest energy are definitely preferred and, surprisingly, so are the targets
that Aalbot are least probable to hit, according to the targeting module. This
could be seen as a natural consequence of the definition of when to reward
Aalbot. Recall from Chapter 12 that Aalbot is given a reward if the robot cur-
rently targeted by Aalbot had died. This does not say anything about that
Aalbot must be able to hit the target, but just select it as a target. This is of
course a disadvantage, since Aalbot may miss its target and not get so many

108 Conclusion

0

20

40

60

80

100

120

min med max min med max min med max min med max min med max min med max

F
re

qu
en

cy

Energy, distance and probability

Target selection (minimum, medium, maximum) for k = 1.2

Energy (First 20 rounds)
Energy (Last 20 rounds)

Distance (First 20 rounds)
Distance (Last 20 rounds)

Probability (First 20 rounds)
Probability (Last 20 rounds)

Figure 12.3: Starting with an empty Q-table and a value of k = 1.2, this fig-
ure illustrates the policy seen over the first and last 20 rounds of measuring
performance. Notice that energy becomes the most significant parameter.

Robocode points as it could by selecting a closer target.

After a further increase of k to a value of 1.5 the policy seems already adapted
during the first 20 rounds. As illustrated in Figure 12.4 targets with the lowest
energy are clearly preferred over those with higher energy levels. An obvious
tendency can also be detected with regards to the distance parameter, where
the closest targets are clearly preferred. The targets with the lowest probab-
ilities of being hit by Aalbot are, once again, favoured over targets with the
highest probabilities.

The tendency to choose the closest target above the farthest has been decreased
a bit when observed over the last 20 rounds. However, the other tendencies
have become even stronger. This corresponds well to the high value of k,
exploiting already known Q-values instead of exploring new (state, action)
pairs.

12.5 Conclusion

Results from the target selection module have been discussed and evaluated
in the previous sections. The discussion leads to a conclusion of howwell rein-
forcement learning is applied in Aalbot. It has been shown that the constant k
has as large impact on how the actions are selected. With values of k ≥ 1.5 the
energy parameter becomes very significant. It could be expected that if more

Conclusion 109

0

20

40

60

80

100

120

140

160

min med max min med max min med max min med max min med max min med max

F
re

qu
en

cy

Energy, distance and probability

Target selection (minimum, medium, maximum) for k = 1.5

Energy (First 20 rounds)
Energy (Last 20 rounds)

Distance (First 20 rounds)
Distance (Last 20 rounds)

Probability (First 20 rounds)
Probability (Last 20 rounds)

Figure 12.4: Starting with an empty Q-table and a value of k = 1.5, this figure
illustrates the policy seen over the first and last 20 rounds of measuring per-
formance. Notice that energy becomes the preferred parameter, and the other
parameters become increasingly insignificant.

training rounds were run, the results of testing with a value of k = 1.1 could
be interesting since this seems to be a good compromise between exploration
and exploitation.

Chapter 13

Genetic Programming
Evaluation

In this chapter the evolutions of the two genetic programmingmodules, move-
ment module and radar control module, are evaluated. First the default train-
ing parameters and environment are specified. Secondly the results gained in
the tests of the twomodules are documented. Finally the possible explanations
for those results are discussed.

13.1 Training Parameters

No exact rules exist for determining in advance which set of parameters such
as mutation rate, deme size, etc. is the best for a specific task. Therefore the
following parameters can be seen as a guess of at least reasonable values.

A set of default parameters were decided in Chapter 10 before the tests began.
Some tests vary one of more of these parameters to determine their influence
on the results. The default parameters used are:

• Number of demes: 1

• Deme size: 100

• Mutation rate: 30%

• Reproduction rate: 5%

• Crossover rate: 65%

Due to the time constaints on the project, the distributed version of the soft-
ware was never fully developed and tested, and therefore the evolution runs
have been limited to one deme. This means that the migration operator was
not used.

The operators used are:

111

112 Test Environment

• Mutation. Substitutes a randomly chosen subtree with a new which is
generated by the grow-tree method with minimum tree depth of 1 and
maximum tree depth of 5.

• Crossover. One-point cross over.

• Reproduction. Individuals are copied unmodied to the succeeding gen-
eration.

• Selection. Fitness-proportional selection.

The initial population is generated using the ramped half-and-half methods
with minimum depth 2 and maximum depth 6.

The fitness of each individual is calculated by running a single Robocode round
withAalbot against the enemies sample.SpinBot,sample.MyFirstRobot
and sample.Crazy. The resulting score is the fitness value, though an extra
fitness bonus of 250 is given when Aalbot is the last survivor. The reason for
not running 10 rounds in a battle, as suggested in Subsection 10.1.4, is the time
constraints of the project.

13.2 Test Environment

To parallelise the evolution process, four computers were used to run several
evolutions at the same time. The evaluation of a single individual took about
30-80 seconds on a dual 2.4 GHz Xeon computer. This is due to the fact that in
order to evaluate the fitness, a Robocode battle must be run.

The information collected for each generation is:

• The program code (an expression) of the best individual.

• Fitness of the best individual in the generation.

• Average fitness of individuals.

• Size (number of nodes) of the best individual in the generation.

• Average size of individuals.

These were chosen to enable visual inspection on the generated program code,
so that the functionality of the genetic evolution programming can be tested.
Also it is necessary to have the program code of the best individual in order to
test it against the evaluation set of robots for the final evaluation as set forth
in the analysis, see Chapter 4. The fitness of the best individual and average
fitness are collected, as it is then possible to see if there is a trend in the fit-
ness; i.e. is the population converging to an optimal solution. The size of the
best individual and the average size are collected to make it possible to evalu-
ate the results of the genetic programming using Occam’s razor: Are the best
individuals also simple?

Movement Module Results 113

13.3 Movement Module Results

Several different evolutions of the movement module were tried. In general
they were tested with Aalbot using the following modules:

• Sensor Interpration

• Scanner Task

• Neural Network Targetting

• Reinforcement Learning Target Selection

The scanner task is a hand-coded module that simply rotates the radar 360
degrees forever. This was necessary, as the real radar control module is also
built using genetic programming, and it was found infeasible to evolve both
at the same time.

The anti-gravity module was not used in the tests, as the purpose of the ge-
netic programming of the movement module is too see how well it performs
compared to the hand-coded anti-gravity module.

13.3.1 Default Parameters

First, a test was made with the default parameters mentioned above. After
25 generations no clear improvements were seen in the average fitness or best
fitness of individuals. Still, because of the relatively large deme size (100) the
test progressed very slowly. Therefore a different test was started with the
same parameters but instead with a deme size of 50. This test was run for 80
generations giving the results shown in figures 13.1 and 13.2. A third test was
started similar to the second test and run for 30 generations. The results of
this third test was similar to the second test, which makes it more likely that
the results from the second test are not just the result of an unfortunate initial
population or similar bad fortune.

The average size graph in Figure 13.1 shows, that the average fitness of the
population does not grow as expected1. Neither are the best individuals in
later generations any better than the best individuals from the first genera-
tions. The standard deviation bars in the average size graph shows, that the
fitness of the individuals are spread out in a large interval, and even this does
not get better as generations pass.

Comparing the two graphs in Figure 13.1 shows that even though the average
fitness is quite low, the fitness of the best individuals are much higher. This
means that some individuals are “super-individuals” that exhibit a much bet-
ter performance than others. As these consistenly show up in even the initial

114 Movement Module Results

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80

F
itn

es
s

Generation

Avg. fitness as a function of generation number

Avg. Fitness/Generation

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80

B
es

t F
itn

es
s

Generation

Best fitness as a function of generation number

Best Fitness/Generation

Figure 13.1: The average and best fitness of individuals in the test with default
parameters.

Movement Module Results 115

generations, it can be theorised that it is quite easy to obtain a high fitness
value in matches against the chosen sample robots.

Looking through the best individuals in each generation a pattern leaps to the
eye. Most of them are really variations over the same general strategy, namely
to move in circles or spirals. Some of the individuals are cluttered by extra
superflous nodes that have no effect on the actuator, but stripping those away
the pattern is seen again.

For example the best individual from generation 13 was this:

(TurnRight
(Plus
(Back (Div

(SpinBotDist)
(MyHeading)))

(EnemyCount)))

This means that the individual should drive backforwards for a distance of the
distance to the SpinBot robot divided by Aalbot’s heading. And that it should
turn right an angle of that previous amount plus the number of enemies left in
the game. Essentially this is a circular motion.

The best individual from generation 34 was also the best individual in genera-
tions 35 and 36. The program code for this individual was:

(TurnLeft (Back (Time)))

That is, backing a distance of the current time, while turning left using that
value as the angle. Again a circular motion, this time with the radius being
enlarged proportional to number of ticks.

The top graph in Figure 13.2 shows a somewhat linear increase in the average
size of individuals as generations pass. Individuals in generation 79 are on
average more than twice the size of individuals in the first generations.

This happens even though the average fitness of the individuals neigher in-
creases or decreases significantly. The increase in node count happens natur-
ally through the evolutionary process, as the mutation operator inserts new
possibly larger subtrees in individuals, and the cross-over operator can poten-
tially substitute a very large part of one individual with a very small part of
the other individual — altogether making larger individuals.

The fact that the average fitness does not change throughout the evolution,
the increased size of individuals means that there must be useless nodes. This
means nodes that are used either in a way that adds nothing to the behaviour
of the robots, or nodes that are never executed. An individual with nodes
that adds nothing to the behaviour of the robot is exemplified in the following
individual from generation 23:

1The implementation of the evolution framework has been tested with sample problems,
where the average fitness converged as expected.

116 Movement Module Results

(Plus
(Plus
(MyFirstRobotX)
(Time))

(Div
(Minus

(MyFirstRobotY)
(SpinBotX))

(CrazyY)))

This individual merely uses arithmetic functions on the believed coordinates
of enemy robots as well as the current time. No actuator functions are used, so
the individual is useless in that it exhibits the behaviour of just standing still.

Correspondingly an example of an individual with nodes that can never be
executed would be:

(IfLessThan
(SpinBotX)
(Plus
(SpinBotX)
2)

(Ahead 10)
(Back 10))

13.3.2 Size Penalised Fitness Function

In attempt to alleviate the problem with many useless or unused nodes, a test
was run with with a modified fitness function. The default parameters were
used as earlier, the deme size was 100 and the fitness function was modifed to
be:

fSizePenalised (h) = f (h)−
⌊

nodeCount(h)

2

⌋

That is the new fitness function is simply the fitness value used earlier minus
half of the number of nodes in the individual. Smaller individuals that perform
as well as a larger individual thus gets a better score. This was done in attempt
to see if forcing programs to be small (simple) would influence the evolution
so that the fitness values got better according to Occams razor, as described in
Subsection 7.1.2.

The results from this test are shown in figures 13.3 and 13.4. As before no real
improvements can be seen in the average fitness over the 40 generations. In-
terestingly, the fitness values of the best individual from this test is superior

Movement Module Results 117

-20

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80

A
vg

. P
ro

gr
am

 S
iz

e

Generation

Avg. program size as a function of generation number

Program Size/Generation

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80

S
iz

e

Generation

Size of best individual as a function of generation number

Size/Generation

Figure 13.2: The average size and size of the best individuals in the test with
default parameters.

118 Movement Module Results

-100

-50

0

50

100

150

200

0 5 10 15 20 25 30 35 40

F
itn

es
s

Generation

Avg. Size-penalized fitness as a function of generation number

Avg. Fitness/Generation

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

B
es

t F
itn

es
s

Generation

Best size-penalised fitness as a function of generation number

Best Fitness/Generation

Figure 13.3: The average and best size-penalised fitness of individuals in the
test with a custom fitness function.

to the best fitness in the earlier tests. The best fitness value occurs at genera-
tion 33 with a size-penalised fitness of 643. As this particular individual has
65 nodes, its Robocode score was 675. In comparison, the best fitness value
observed in the two previous tests was 633. It is not significant enough to
conclude though, that this could not be purely a chance due to for example a
particularly fortunate initial population.

Comparing the graphs of average program sizes in figures 13.2 and 13.4 it can
be seen that the average program sizes are in general lower over time with the
size-penalised fitness function than with the regular fitness function. After 40
generations the average program size was 27 with the size-penalised fitness
function, and 34 with the regular fitness function. Even though this is not a
solid basis for strong conclusions, it seems that the numbers indicate that a
size-penalised fitness function might be beneficial in keeping the individual
size low while still maintaining a high fitness value.

Movement Module Results 119

-10

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

A
vg

. P
ro

gr
am

 S
iz

e

Generation

Avg. program size as a function of generation number

Program Size/Generation

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35 40

S
iz

e

Generation

Size of best individual as a function of generation number

Size/Generation

Figure 13.4: The average size and size of the best individuals in the test with a
size-penalising fitness function.

120 Movement Module Results

13.3.3 Modified Parameters

In an attempt to investigate how the exogenous parameters influence the evol-
ution, a test was performed with these parameters:

• Deme size: 25

• Mutation: 60%

• Reproduction: 10%

• Crossover: 30%

This more extensive use of the mutation operator could be hoped to produce a
more diverse population that would ultimatively lead to an increased average
fitness over time.

The results of this test is shown in Figure 13.5. Despite of the new parameter
settings, the end result is the same – the average fitness seemingly stays at the
same level over time. Also, no better best individuals were produced.

13.3.4 Modified Robot

Due to a suspicion that the other modules in the robot were dominating the
movement module, so that the efficiency of the movement module was of no
real importance to the overall performance of the robot, a new test was de-
vised. In this test the neural network targeting, reinforcement learning target
selection and anti-gravity modules were disabled. Instead amodule wasmade
from the sources of a robot known as SnippetBot, which is a tutorial robot.
This module simply shoots every time the radar scans another robot, without
any special target selection or aiming methods.

This made the evaluation of a Robocode round faster, so the deme size was set
to a medium value of 50. The results from this test can be seen in Figure 13.6.

Again, the average fitness of the individuals did not consistently improve over
time. Though, worth noticing is the fact that the average fitness in this case is
higher than in the previous test. Roughly speaking an average fitness of 150
compared to 50. The fitnesses of the best individuals were also distinct as
they were larger than in the previous tests. The best fitness value was 704,
compared to the best from the earlier test with fitness 675.

Examining the program code of the best individuals for each generation, one
particular individuals leaps to the eye:

(Ahead
(Random
(TurnRight

(Div
(EnemyCount)
(MyFirstRobotY)))))

Movement Module Results 121

-100

-50

0

50

100

150

200

0 2 4 6 8 10 12 14

F
itn

es
s

Generation

Avg. fitness as a function of generation number

Avg. Fitness/Generation

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

B
es

t F
itn

es
s

Generation

Best fitness as a function of generation number

Best Fitness/Generation

Figure 13.5: The average and best fitness of individuals in the test with modi-
fied parameters.

122 Radar Control Module Results

-50

0

50

100

150

200

250

300

350

0 5 10 15 20

F
itn

es
s

Generation

Avg. fitness as a function of generation number

Avg. Fitness/Generation

520

540

560

580

600

620

640

660

680

700

720

0 5 10 15 20

B
es

t F
itn

es
s

Generation

Best fitness as a function of generation number

Best Fitness/Generation

Figure 13.6: The average and best fitness of individuals in the test with no
other machine learning modules.

This particular individual had the best fitness for four consecutive generations,
namely generations 7, 8, 9 and 10. The program code shows the same idea
as the previously examined program code, namely that it moves the robot in
circular motions. The special behaviour here is that the radius of the circle is
chosen at random every turn. It seems natural that this type of behaviour is
hard for other robots to predict.

13.4 Radar Control Module Results

Because of the limited time available, the performance of the genetic program-
ming radar module was only measured over a single test case with the para-
meters set to their default values, see Section 13.1.

Radar Control Module Results 123

-100

-50

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

F
itn

es
s

Generation

Avg. fitness as a function of generation number

Avg. Fitness/Generation

 250

 300

 350

 400

 450

 500

 550

 600

 650

 0 5 10 15 20 25 30

B
es

t F
itn

es
s

Generation

Best fitness as a function of generation number

Best Fitness/Generation

Figure 13.7: The average and best fitness of individuals in the radar control
module test.

124 Conclusion

As can be seen in Figure 13.7, the fitness of the best individuals remains on
a high level of approximately 500-600 through the entire evolution. Already
in the initial, randomly generated, deme of individuals, an individual with a
high fitness value is found. The best individual seen over all generations was
found in generation 26 having a fitness value of 643. All the best individuals
found exhibit a very simple radar controlling strategy, which is illustrated by
the best individual of generation 5:

(TurnRadarLeft
(Sequence
(CrazyHeading)
(SpinBotLastSeen)))

All this program does is simply to turn the radar left by some amount each
turn, which corresponds to the basic radar controlling strategy described in
Subsection 1.2.1. This strategy simply rotates the radar 360 degrees continu-
ously through the entire game. The above program represents the general
trend among the best programs found by genetic programming process, and
as such terminals as e.g. the above CrazyHeading and SpinBotLastSeen
only provide numerical arguments to either the TurnRadarLeft or -Right
functions. The intentions of including these terminals representing informa-
tion on the enemies is thus not employed to devise some complex and envir-
onment dependent radar controlling strategy as intended.

13.5 Conclusion

Generally for both the evolution of the movement module and the radar mod-
ule was, that a steady increase in the average fitness of individuals never oc-
cured as was hoped for. This does not necessarily mean that the individuals
were particular bad, just that it was not possible for the genetic programming
process to make them better over time. This could happen for multiple inde-
pendent reasons; these will be analyzed below.

One reason for this could be that a better hypothesis than the evolved indi-
viduals does not exist in the defined hypothesis space. That is, perhaps other
types of terminals or functions were necessary to evolve an optimal move-
ment or radar controlling strategy, or perhaps it was really necessary to in-
clude loops or function environments. During work with the movement mod-
ule, other possible terminals were identified. For example it would probably
be an advantage to have a terminal that states whether or not the robot is in a
collision with an enemy.

On the other hand, the set of functions and terminals for the radar controlling
module seems plentiful enough to build a goodmodule. This could mean that
the sheer amount of possible terminals and functions slowed down the evol-
ution, as the evolutionary process had too many options to choose from. That

Conclusion 125

could explain why many individuals were filled with useless expressions us-
ing the arithmetic functions for no purpose. Removing those functions from
the languagemight havemade the evolutionary process improve the individu-
als over fewer generations. Similarly it might have happened with the full
language if the process had been continued for a longer period of time.

Another view on the results could be that these results indicate that the op-
timal movement strategy and radar control module has been found within the
limitations of the hypothesis space. The workings of the other modules in the
robot might have made Aalbot so efficient in battles against the chosen oppon-
ents that the movement module could never improve much on that. On the
other hand, the other modules could have been so inefficient in battles, that
their erraneous behaviour simply made it impossible for Aalbot to improve its
fitness from better movement. A robot that moves well but targets very poorly
will probably never succeed. The test run with the modified robot examined
this, and the fitness was actually improved using other targetingmodules than
the original. However a steady increase in fitness did not occur here either.

A potential pitfall is the fact that the default parameters were focused on cross-
over as the most important operator. The nature of the chosen language might
mean, that cross-over operations very rarely produce meaningful offspring.
Thereby the cross-over of two individuals with high fitness might in almost
any case produce offspring with low fitness. This could be explained by the
fact that the individuals with high fitness all seem to be very simple in struc-
ture with few nodes. Cross-overs on individuals with few nodes does not
make as much sense as on larger individuals. This was explored using the
modified parameters test, where the focus was put on the mutation operator
primarily. This also failed to deliver steady increases in fitness values.

An area of interest was the structure and size of individuals. From Subsection
7.1.2 it was determined that it might be fruitful to focus on smaller individu-
als, as they should provide a more general solution to a problem without as
many dependencies on specifics. Therefore the idea from Occam’s Razor was
sought encapsulated in a custom fitness function that penalised the fitness of
larger individuals. The intent was to evolve smaller individuals that hope-
fully had fewer useless or non-used nodes, which could potentially improve
the off-spring of cross-over operations. This was tested in the custom fitness
function test, but sadly did not live fully up to its promising idea. The res-
ults did indicate that smaller individuals were produced on average, and that
these individuals on average performed as well as the their larger counter-
parts evolved in other tests. In addition there was a slight indication that the
best performing individuals it evolved were better than the ones from other
tests. However, further tests are necessary to conclude anything as many ran-
dom factors play a part in the evolutions, and as the results only cover few
generations.

Chapter 14

Conclusion

The report is concluded in this chapter by an elaboration of the experiences
and results gained by applying machine learning with the purpose of making
self-improving autonomous robots for the Robocode framework.

14.1 Measurable Success Criteria

The analysis was concluded with a measurable success criteria for Aalbot,
namely that it should score well in a combat against a chosen set of robots.
The criteria in its entirety can be found in Chapter 4.

After completion of the implementation and training of Aalbot, it was tested
whether or not it fulfilled the criteria. The results from one of the battles are
shown below:

Robot Total Score Bullet Damage

Peryton 3166 1390

Aalbot 1800 850

SquigBot 1070 454

sample.Walls 720 399

This battle was run several times, and the above is representative for all the
scores achieved. It can thus be concluded that Aalbot succeeded in fulfilling
the stated goal.

14.2 Future Work

The work with Robocode was intriguing, but time was limited for this project.
Therefore a lot of issues remain unsolved or unexplored. Suggestions for fu-
ture work on a Robocode robot based onmachine learning would be to explore
some of the following topics:

127

128 Recommendations

• Module structure. The results of some of the machine learning meth-
ods suffered under the fact that the task of controlling the behaviour of
the robot was analysed to great depths, and split into many small mod-
ules. It would be interesting to develop a full Robocode robot using just
a single machine learning method such as genetic programming to con-
trol the entire behaviour of the robot, and thus obsolete the need for an
extensive analysis of the game.

• Genetic programming. The evolution of the genetic programming mod-
ules was hindered by the fact that the implementation only supported
evolution on a single computer. The enhancement of the system to allow
parallelised evolution using demes on several computers could make it
possible to improve the results achieved.

• Fading Memory Maps. The usage and complexity of the fading memory
maps used in the implementation could easily be enhanced. Especially
themodules in the robot could be changed to allow a stronger connection
with the fading memory maps. Also the anti-gravity movement maps
could be enhanced with the possibility of specifying a maximum effect
radius for each gravity point to allow easier use by machine learning
methods.

14.3 Recommendations

As recommendations, our general experiences in working with Robocode and
machine learning will be summarised.

We found that the application of neural networks to targeting yielded reas-
onable results, although further explorations concerning the approaches not
prioritised in this report could be pursued. The choice of neural networks is
particular interesting as it allows for the creation of an adaptive robot.

Contrarily the use of genetic programming in Robocode did not yield the res-
ults expected from studies of the theory behind. Considerable computation
time and many experiments are required in order to attain results comparable
to traditional hand-coded robots. This is after all what makes it interesting to
work with machine learning methods.

The use of reinforcement learning is promising, as it might be possible to
obtain an adaptable robot by redefining the state space to be much smaller.
However, the non-determinism involved in Robocode makes it complicated
and the lack of good explanations of reinforcement algorithms handling non-
determinism in the literature makes it worse.

Our general experience with Robocode is that it makes for an exciting way of
getting results with machine learning that can be tested in practice. However,
the lack of exact documentation about the Robocode internals, that Robocode
is closed-source and the fact that it posed many limitations regarding thread
usage, file usage, etc. made it a troublesome venture.

Bibliography

[AN01a] Mathew A. Nelson, 2001. http://robocode.alphaworks.ibm.
com/help/.

[AN01b] Mathew A. Nelson, 2001. http://robocode.alphaworks.ibm.
com/docs/robocode/.

[ASJ96] Harold Abelson, Gerald Jay Sussman, and Sussman Julie. Structure
and Interpretation of Computer Programs. MIT Press, 2nd edition, 1996.

[Bea00] Zhang B. and Chen X. et al. Agent architecture: A survey on
robocup-99 simulator teams. Proceedings of the 3rd World Congress
on Intelligent Control and Automation, 2000. http://wrighteagle.
org/sim/paper/3705.pdf.

[Ben98] Wolfgang et al Benzhaf. Genetic Programming – An Introduction. Mor-
gan Kaufmann Publishers, Inc., 1998.

[Chr95] Bishop M. Christopher. Neural Networks for Pattern Recognition. Ox-
ford University Press Inc., 1995.

[Eis03] Jacob Eisenstein. Evolving robot tank controllers. 2003.
http://www.ai.mit.edu/people/jacobe/research/
robocode/genetic_tanks.pdf.

[FOL] Free on-line dictionary of computing. http://foldoc.doc.ic.
ac.uk/.

[FS97] Joy Frecthling and Laure Sharp. User-Friendly Handbook for
Mixed Method Evaluations. Directorate for Education and Human
Resources, NSF, 1997. http://www.ehr.nsf.gov/EHR/REC/
pubs/NSF97-153/START.HTM.

[Koz92] John R. Koza. Genetic Programming - On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

[Li02] Sing Li. Rock ’em, sock ’em robocode!, 2002. http://www-106.
ibm.com/developerworks/java/library/j-robocode/.

[Mar02] Rae Marsh. Secrets from the robocode masters: Dodge bul-
lets, 2002. http://www-106.ibm.com/developerworks/
library/j-dodge/.

129

130 BIBLIOGRAPHY

[McC02] David McCoy. Secrets from the robocode masters: Factored
wall avoidance, 2002. http://www-106.ibm.com/
developerworks/library/j-fwa/.

[Mit97] TomM.Mitchell. Machine Learning. MIT Press and TheMcGraw-Hill
Companies, Inc, 1997.

[Mit02] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press,
2002.

[Owe02] Alisdair Owens. Secrets from the robocode masters: Anti-
gravity movement, 2002. http://www-106.ibm.com/
developerworks/library/j-antigrav/.

[Piv00] Marcus Pivato. On Occam’s Razor. University of Toronto, Depart-
ment of Mathematics, 2000. http://citeseer.nj.nec.com/
pivato00occams.html.

[Roba] Robocode repository. http://www.robocoderepository.
com/.

[Robb] Robo wiki. http://robowiki.dyndns.org/.

[Ros89] J. Kenneth Rosenblatt. A fine-grained alternative to the subsump-
tion architecture for mobile robot control. Proc of the IEEE Int.
Conf. on Neural Networks, 1989. http://citeseer.nj.nec.com/
rosenblatt89finegrained.html.

[SA96] Franklin S. and Graesser A. Is it an agent, or just a program?: A tax-
onomy for autonomous agents. Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, Springer-
Verlag, 1996. http://www.msci.memphis.edu/~franklin/
AgentProg.html.

[Sut98] Richard S Sutton. Reinforcement learning: An introduc-
tion. 1998. http://www-anw.cs.umass.edu/~rich/book/
the-book.html.

[WJ95] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent Agents:
Theory and Practice. Knowledge Engineering Review, 10(2):115–152,
June 1995.

Appendix A

Introduction to Neural Networks

The material presented in Chapter 2 and Chapter 8 concerns neural target-
ing and assumes a basic understanding of neural networks. Based on [Mit97,
Chapter 4] a short introduction to this topic is now given, beginning with a
discussion of neurons and their arrangement into networks. Subsequently an
overview of network training is given with emphasis on the backpropagation
algorithm and its derivation.

A.1 Architecture

Artificial neural network are inspired by biological learning systems, which
are based on interconnected neurons in the brain. Artificial neural networks
(hence forth referred to as neural networks) are typically applied to function
approximation problems, and neurons are typically arranged into a number of
layers. Figure A.1 shows an example of a two-layer neural network (a) and a
detailed sketch of a single neuron (b). Neurons are depicted as circles, network
inputs are depicted as unfilled circles and lines represent connections between
neurons.

The layers are referred to as the input layer, hidden layer and output layer, from
left to right respectively. Although three layers are present, the first layer only
serves as inputs to the network and contains no actual neurons, so the network
is only considered two-layered. Neural networks of two layers can represent
any bounded continuous function, and with three layers any function can be
approximated[Mit97, Section 4.6.2]. Hence networkswith more than three lay-
ers are rarely used in praxis.

In Figure A.1 the layers are fully connected: each neuron receives input from
every neuron in the preceding layer. All inputs have an associated weight, de-
noted wk j for output layer neurons, as shown in the (b)-figure. Informally the
weight specifies the contribution of the input to the neuron output, and impli-
citly to the final output of the network. Since all edges are directed from left to
right, the network is feed forward; a property assumed by the backpropagation
algorithm to be discussed later.

131

132 Computational Units

input layer output layer

hidden layer

(b)(a)

Hk

HM

Ok = σ

(

M

∑
j=1

H j ·wkj

)

I1 O1

ON

H1

.

.

.
Ii

.

.

.

IL

H1

HM

.

.

.
Ok

.

.

.

H j

.

.

.

I2 O2
wk1

wkj

w jM

.

.

.

.

.

.

Figure A.1: Example of a fully connected, feed forward neural network (a) and
a single neuron in the output layer (b).<

As implied by the figure, the following notation will be used:

• There are L input neurons, each representing a value, Ii.

• There are M hidden neurons, each calculating a function value, H j.

• There are N output neurons, each calculating a function value, Ok.

• Weights are denoted by w ji and wk j for input layer and hidden layer
neurons, respectively. E.g. wk j denotes the weight to the neuron com-
puting Ok from the neuron computing H j.

Neurons will be referred to by the function values they compute, e.g. Ii refers
to a neuron as well as a function value. When referring to the function com-
puted by e.g. Ii, the notation Ii () will be used. Vectors will refer to all values

in a layer, e.g.
−→
H is the vector of all outputs from the hidden layer.

Network computations proceed by inputting a real valued number to each of
the L neurons in the input layer, and the result is given by the values of the N
output neurons (to be formalized shortly). Hence the network can represents
the following type of functions:

t : RL → R
N . (A.1)

A.2 Computational Units

Computations are divided between each neuron of the network, so consider
as an example the sketch of the single output layer neuron depicted in Figure

A.1. It receives as input a vector,
−→
H , which is weighed by a corresponding

weight vector, −→wk. The neuron computes a function value, Ok, as follows:

Training 133

Ok

(−→wk,
−→
H
)

= σ
(−→wk ·

−→
H
)

= σ

(

M

∑
j=1

H j ·wk j

)

,

where the activation function, σ , defines an important characteristic of the
neuron. Without an activation function, the network would be biased to rep-
resent linear functions only, which might not represent the target hypothesis
sufficiently well. Furthermore the activation function can limit the output in-
terval to a desired range.

σ is required to be differentiable, which will become apparent when network
training is discussed in the next section. In praxis, the sigmoid activation func-
tion, σsig (y) = 1

1+ey , is often chosen and will consequently be used in the next
section. This monotonically increasing function limits the range to]0; 1[; in
general, monotonicity is desirable because large absolute neuron inputs will
always contribute to a higher neuron output, independently of other inputs,
while smaller neuron inputs will give correspondingly smaller outputs. This
is in contrast to e.g. σ (y) = y2. When an output in the interval]−1; 1[is re-
quired, the tanh activation function, σtanh (y) = ey−e−y

ey+e−y , can be used [Chr95, p.
127].

A.3 Training

A hypothesis represented by a neural network is defined by the network’s
structure (number of layers and neurons in each layer) as well as its weights
and activation function. In this section the problem of determining the op-
timal weights based on a fixed network structure and activation function is
discussed. This corresponds to a search through an incomplete hypothesis
space, since the target hypothesis might not be representable by a network
with e.g very few hidden neurons. Determining the optimal structure is of-
ten an empirical matter, although other approaches such as genetic algorithms
have been applied [Mit02, p. 65-76]. In the next subsection network error rep-
resentation is discussed followed by an outline of error minimization using
backpropagation.

A.3.1 Error Representation

Neural network training is based on a training set, D, of pairs,
〈−→x , t

(−→x
)〉

,
where t is the target function that the network should be trained to represent;
in other words, D is a set of inputs,−→x , with associated outputs, t

(−→x
)

, known
to be in conformity with t. Before training, network weights are typically ini-
tialized to small random values, and the network will consequently do a very
bad job at approximating t. The training task now amounts to searching a hy-
pothesis space consisting of all possible network weights, where the search is
guided by minimizing the following error function:

134 Training

Ed

(−→w
)

=
1

2
·

M

∑
k=1

(tk −Ok)
2 . (A.2)

Here Ed is the error on example, d =
〈−→x , t

(−→x
)〉

, tk is the kth components of
t
(−→x

)

, and, as before, Ok is the kth output of the network when given −→x as
input and with −→w as weights.

Intuitively Ed corresponds to the Euclidean distance between the target and
actual output vectors, which seems sensible. This particular representation is
convenient when minimizing the error function, which will become apparent
in the following subsection. Note also that (A.2) is the error per training example
as opposed to the accumulated error over all examples in D. This is the basis
of the stochastic version of the backpropagation algorithm to be discussed next.

A.3.2 Backpropagation

Backpropagation is a common algorithm for searching the space of network
weights in the endeavor to minimize Ed. It does so according to the gradi-
ent descent rule. The gradient,

`
Ed, is a vector defining the steepest slope

in positive direction in a point on the error surface defined by Ed. Gradient
descent exploits this by altering weights in all layers in the negative direction
of the gradient. In the case of a hidden layer weight, w ji, the following weight
update is added:

∆w ji = −η · ∂Ed

∂w ji
, (A.3)

where the training rate η determines in how large steps the weight updates
should be performed. The key idea in calculating this partial derivative is
to express (A.2) as a composite function and applying the chain rule. In the
following the derivation of the backpropagation rule is outlined for a network
with two layers, as the one depicted in Figure A.1.

Let the weighed sum of all inputs to the output layer neuron Ok be denoted

by netk =
M

∑
j=1

wk j · H j. When considering neurons in the output layer, the

actual output of Ok depends directly upon netk, and the partial derivative is as
follows:

∂Ed
∂wk j

= ∂Ed
∂Ok
· ∂Ok

∂netk
· ∂netk

∂wk j

= − (tk −Ok) ·Ok (1−Ok) · H j

= −δk · H j

, where δk = (tk −Ok) ·Ok (1−Ok) .

(A.4)

The first and third terms follow from the rule of sumdifferentiation, the second
from the derivative of the sigmoid function. Note how the exact choice of Ed

Training 135

in (A.2) results in a simple term containing both target and actual output of the
network. Finally the error term, δk, is introduced for later convenience.

Next consider deriving the partial derivative of Ed with respect to weights to
a neuron H j in a hidden layer, and let net j be defined analogous to netk. The
situation is complicated by the fact that output layer neurons do not depend
directly on net j in the hidden layer. Rather they depend on netk in the output
layer, which again depends on the outputs H j from the hidden layer, which
then depend on net j. This reasoning leads to the partial derivatives of Ed for
weights w ji in the hidden layer:

∂Ed
∂w ji

=
N

∑
k=1

∂Ed
∂Ok
· ∂Ok

∂netk
· ∂netk

∂H j
· ∂H j

∂net j
· ∂net j

∂w ji

=
N

∑
k=1
− (tk −Ok) ·Ok (1−Ok) ·wk j · H j

(

1− H j

)

· Ii

=
N

∑
k=1
−δk ·wk j · H j

(

1− H j

)

· Ii

= −δ j · Ii

, where δ j =
N

∑
k=1
−δk ·wk j · H j

(

1− H j

)

.

(A.5)

Here the error term δ j is analogous to δk, which conveniently can be reused
from output-layer computations and hence need not be recomputed. Note
that a sum is applied because a weight in the hidden layer influences all output
layer neurons.

It should be apparent that this approach can be generalized to networks with
more than one hidden layer: For each additional layer, new error terms, δs,
are introduced by computing a longer chain of dependencies. Each δs is then
propagated back through the layers, hence the name backpropagation.

A.3.3 The Algorithm

The backpropagation weight update for each training example can now be
summarized in the following natural language algorithm:

1. For each training example
〈−→x , t

(−→x
)〉

:

(a) Compute the actual network output
−→
O on input −→x .

(b) For each output layer neuron Ok:

i. Compute the output layer error term δk as shown in (A.4).

ii. Apply weight updates to each weight by adding ∆wk j = η · δk ·
H j to wk j.

(c) For each hidden neuron H j:

136 Training

i. Compute the hidden layer error term δ j as shown in (A.5).

ii. Apply weight updates to each weight by adding ∆w ji = η · δ j ·
Ii to wk j.

This procedure is typically repeated thousands of times until a stopping cri-
teria is met, e.g. when the error is below a given threshold over all examples
in the validation or test set [Mit97, p. 110-111]. In the case of Aalbot the training
data is not static, and training is performed online; this is discussed further in
Chapter 8.

Appendix B

Introduction to Reinforcement
Learning

This appendix serves as an introduction to reinforcement learning and the ba-
sic concepts and notation related to it. An introduction to central keywords is
given and mathematical definitions are presented. Following this the idea be-
hind the Q learning algorithm is presented. This chapter is based upon [Mit97]
and [Sut98].

In reinforcement learning the environment consists of different states. These
states are chosen by the programmer and should yield a logical way to encap-
sulate a larger problem, e.g. moving a robot from one location to another in
a fixed sized environment. This problem can be encapsulated by dividing the
environment into different states. The task at hand is now to learn which states
the robot should go through in order to reach its goal. This problem can be re-
duced to measuring how good a given state is for the robot, and then finally
choose the chain of good states that leads to the goal. For the robot to learn how
good a state is rewards are given.

The robot chooses an action given its state, possibly affecting the environment
such that the robot perceives a change of state. The task is now: for any given
state, choose the action that maximises the accumulated reward over time.
This solves the problem of getting from one state to another.

B.1 Reinforcement Learning Notation

To solve the task given in the previous section the following notation will
prove necessary.

A control policy, π , is a mapping from states to actions:

π : S→ A,

where S is the set of all states and A is the set of all actions, and π(s) = a if a
is the action selected in state s.

137

138 Reinforcement Learning Notation

Figure B.1: An example of an environment with six states. The arrows between
states denote a valid action. Rewards, given by the Rw function, are associated
with each valid action in each state. G marks the goal state.

For the robot to learn the value of each (state, action) pair a reward function,
Rw , is introduced. The reward function in the environment of the robot is
illustrated in Figure B.1. The reward function maps from a given state s and
an action a to a real value.

Rw : S× A→ R.

In order to calculate the resulting state, from applying action a in state s, a
transition function, δ, is introduced. It is on the following form:

δ : S× A→ S ,

where δ(s, a) is the resulting state from taking action a in state s.

Recall that we want to learn a policy which produces the greatest accumulated
reward over time. The accumulated reward Vπ (st) is achieved by following
an arbitrary policy, π , from an arbitrary state. And is defined as follows:

V π (st) =
∞

∑
i=0

γiRw(st+i, π(st+i)). (B.1)

Here the sequence of rewards, Rwt+i
, is generated by starting in state st and re-

cursively using the policy π to select an action (e.g. at = π(st), at+1 = π(st+1))
and determining the next state s j+1 = δ(s j, π(s j)) , ∀ j ≥ t. The constant γ

(0 ≤ γ ≤ 1) is used to weight the value of future rewards relative to imme-
diate ones. Note that if γ = 0 , future rewards are not considered. Contrary,
as γ approaches 1, future rewards are weighted more heavily. (B.1) is often
referred to as the discounted cumulative reward, because of the discounting of
future rewards relative to immediate ones.

With a function describing the greatest accumulative reward, it is now possible
to define an optimal control policy, π⋆, as:

π⋆(st) = argmax
π

[Rw (s, a) + γV⋆ (δ (s, a))] , ∀st ∈ S. (B.2)

Q-learning 139

Figure B.2: Left: Q(s, a) values for an optimal control policy for the robot.
Right: V⋆(s) values of such an optimal control strategy.

The argmax operator, used in (B.2), maximises the expression with regards to
the argument, π . The value function of such an optimal policy, π⋆, will be
denoted V⋆ (s). It maps from an initial state, s, to the maximum accumulative
reward achievable by following π⋆ (s).

(B.2) implies that to learn the optimal policy, π⋆, it is only required to learn V⋆.
The solution, however, has a limitation: Learning V⋆ requires perfect know-
ledge of both the transition function, δ (s, a), and the reward function, Rw (s, a).
This limitation renders the definition of π⋆ useless in problem domains where
δ and Rw are not perfectly known to the robot. Fortunately, reinforcement
learning provides a remedy, namely Q learning.

B.2 Q-learning

Not having perfect knowledge of the δ and Rw functions corresponds to the
lack of training data in the form of 〈s, π(s)〉 pairs used in e.g. neural networks.
The strength of Q learning is the capability to learn an optimal policy, π⋆ even
under these circumstances. This builds on a function Q : S× A→ R.

Q (s, a) = Rw (s, a) + γV⋆ (δ (s, a)) (B.3)

Notice that Q (s, a) is exactly the quantity that is maximised in (B.2). Because
of that, the optimal policy can be formulated as:

π⋆ (s) = argmax
a

Q (s, a)

At a first glance this rewrite might seem useless, but it serves the purpose of
showing that the optimal policy can be learned, merely by learning the Q func-
tion. Figure B.2 illustrates both the Q function and the optimal value function
that ideally should be learned by the robot.

140 Algorithm for Learning Q

Figure B.3: An optimal control policy for the robot.

B.3 Algorithm for Learning Q

Learning the Q function can be accomplished by iterative approximation. This
can be seen from the close relationship between the optimal value function,
V⋆ (s), and the function Q (s, a):

V⋆ (s) = max
a′

Q
(

s, a′
)

where the max operator returns the maximum value of Q (s, a′) by varying a′.
This relationship allows for rewriting equation B.3 to

Q (s, a) = Rw (s, a) + γ max
a′

Q
(

δ (s, a) , a′
)

(B.4)

Using equation B.4 it is possible to learn an optimal policy by iteratively per-
forming an action, a, observing the resulting reward, r = Rw (s, a), and the new
state, s′ = δ (s, a). At any given time the learner has an estimate, Q̂ (s, a), of
the actual Q function. At each step of the iterative approximation the current
estimate is updated for the previous (state,action) pair as follows:

Q̂ (s, a) ← r + γ max
a′

Q̂
(

s′, a′
)

.

This approach can be considered as successively sampling the δ and Rw func-
tions one step ahead from the current state s. Theorem 13.1 in [Mit97] states
that performing the iterative approximation, as described in Algorithm 1, en-
sures convergence towards an optimal control policy.

Action Selection 141

Algorithm 1 The algorithm for learning Q

For each s, a initialise the table entry Q̂ (s, a) to zero
Observe the current state s
Do forever:

• Select an action a and execute it

• Receive the immediate reward r

• Observe the new state s′

• Update the table entry for Q̂ (s, a)as follows:

Q̂ (s, a) ← r + γ max
a′

Q̂
(

s′, a′
)

• update s← s′

B.4 Action Selection

The problem of learning an optimal control policy seems related to the prob-
lem of finding a reasonable approximations to a target function in other ma-
chine learning paradigms (e.g. neural networks). However an interesting as-
pect has to be taken into consideration when speaking of Q learning, namely
how to perform action selection.

Action selection is the process of choosing an action, a′ , given the Q values
for all actions a j ∈ A in a state s. Different approaches have been devised for
selecting actions, as described in [Mit97, 379] and [Sut98]. Two of these are
presented here.

(B.5) illustrates an action selection scheme often referred to as greedy in the
literature. It simply selects the action with the highest Q value.

a′ = argmax
a

Q (s, a) (B.5)

Another approach for selecting actions are the calculation of weighted probab-
ilities of the Q values in the given state. (B.6) shows how such probabilities are
calculated. This approach introduces two interesting subtleties to Q learning,
namely exploration and exploitation.

P (ai|s) =
Q (s, ai)

∑ j Q
(

s, a j

) (B.6)

Using only the greedy action selection from (B.5) might lead the learners es-
timate, Q̂ (s, a), to converge to a local optimum. This is because the choice of

142 Action Selection

initial actions has a huge impact on the future accumulated reward. This ac-
tion selection scheme maximises the cumulative reward over time, by always
exploiting the current estimate, Q̂, hence the name exploitation.

Using the probabilistic approach from (B.6) ensures that even though an ac-
tion in a given state, s , has been rewarded, the other actions in s will have a
chance of being selected in the future. This can help the current estimate, Q̂, to
overcome a local optimum and continue the search for a global optimum.

Appendix C

Introduction to Genetic
Programming

This appendix provides an introduction to the theory of genetic programming.
First, the background of genetic programming is introduced followed by a
general description of how to apply genetic programming to problem solving.

C.1 Background

Genetic programming can be considered as a new field in computer science. It
was first presented by John R. Koza at a conference in 1989, but relies heavily
on the concept of genetic algorithms, which was invented by John Holland in
the 1960s.

Both genetic algorithms and genetic programming are inspired by the biolo-
gical theories of genome evolution. Genetic algorithms most often work on
simple bit strings (genetic strings) each representing a possible solution to
some problem. A population of bit strings is evolved over several generations
bymeasuring each string’s capability of solving the task and only allowing the
best individuals to survive and reproduce themselves into the next generation.
This idea originates from the Darwinian principle: “Survival of the fittest”.

In genetic programming a population of computer programs is evolved over
generations, and after a number of generations a program which solves (or
approximately solves) a specific problem will occur among the programs in
the current population. This holds only under the assumption that a solution
in fact exists and that the evolutionary process is given enough time to find it.

Genetic programming removes the constraints of genetic algorithms with re-
spect to the limited amount of representational power that lies in a relatively
short bit string. As the problems get more complex, a more powerful repres-
entation in form of a computer program becomes the natural choice. Contrary
to a simple bit string, a computer program can easily utilise the concepts of

143

144 Applying Genetic Programming

procedures, functions, iteration and recursion, that might be necessary to solve
some types of problems. Representing such concepts in a simple bit string is
of course possible, though very tedious. A general problem, or obstacle one
might say, is that when working with machine learning techniques it is often
necessary to specify the size and shape of the solutions. This is not the case
with genetic programming, where size and shape of the program resulting
from generations of evolution is not known in advance. [Koz92, p. 63]

Genetic programming is considered to be a domain-independent technique for
solving a broad range of problems and has been successfully applied in many
cases. For example, good results have been achieved within the fields of cel-
lular automata, space satellite control, molecular biology, design of electrical
circuits and robot control. [Mit02, p. vii]

C.2 Applying Genetic Programming

When applying genetic programming to some problem, the following five pre-
paratory steps must be taken:

1. First, the set of terminals in the problem domain must be determined.
Terminals can be thought of as variables and constants or as the inputs
available to the computer programs in the population.

2. A set of functions related to the problem also needs to be specified. In
addition, certain basic and domain-independent functions such as arith-
metic functions, conditionals etc. must also be included in the function
set. The functions together with the terminals can be considered as the
building blocks from which a program in the population is constructed.
With this in mind, the idea of genetic programming can be restated as a
search within the space of all possible combinations of functions and ter-
minals for the program that solves the problem. The property of closure
of functions must exist on the sets of functions and terminals, as any pro-
gram constructed should be syntactically legal. That is, a function must
be able to take any other function or terminal as an argument. Programs
consisting of the chosen functions and terminals needs to be represented
in some programming language. A functional language would seem to
be the natural choice, and in fact many applications of genetic program-
ming uses the LISP programming language.

3. Some performance measure of evolved programs must be specified, be-
cause as mentioned above, only the best programs (or individuals) in
a population are allowed to reproduce into the following generation.
The measured performance of an individual is called the fitness of the
individual. The fitness of a program could for example be a numerical
measure of the difference between the program’s output and the desired
output. In this case, evolution of the programs should continue until a

Applying Genetic Programming 145

program with a fitness of zero or close to zero is found. In problem do-
mains involving games, the fitness of a program could be equal to the
points scored, implying that the evolution should breed programs with
high fitness values. When dealing with problems that exhibit random-
ness in some manner, a number of fitness cases can be used to measure
the fitness of a program under different circumstances. A more general
and representative value of a program’s fitness can be obtained in this
way.

4. Several parameters need to be specified before applying genetic pro-
gramming. According to [Koz92, p. 115-116], the two main parameters
are the population size, M, and the maximum number of generations, G.
However, one can question the importance of the last mentioned para-
meter G, as it would seemmore natural to limit the process by some spe-
cified time bound or a satisfactory fitness value. Moreover, there exist
a lot of other parameters influencing how to perform the evolutionary
steps between generations. These parameters have minor significance
and can only influence the time spend on the evolutionary process by
some relatively small amount. Hence they will not be described in fur-
ther detail.

5. A termination criterion should be stated as the point at which the evol-
utionary process has produced a satisfactory result. The termination cri-
terion could more specifically be the point at which one of the programs
in the population is found to have some adequate fitness. Another com-
mon used method is to register the fittest individual found from gener-
ation to generation, and then returning the best-so-far individual after G
generations.

C.2.1 Genetic Operations

In genetic programming, the first generation of programs is randomly com-
posed using the available functions and terminals. These initial programs are
not likely to exhibit a worthy fitness with respect to the problem to be solved,
but still some of the programs will have better fitness than others. Genetic
operations are then applied to these programs, which are selected based on
their fitness. More precisely, the genetic operations work on the parse trees
of the programs, and hence programs will be represented as parse trees in the
following.

The first of two primary genetic operations is the reproduction operation. It
works by selecting an individual from the population based on its fitness, and
then copying the individual directly, i.e. without alterations, into the next gen-
eration. The individual is most often selected using fitness-proportionate se-
lection, which means that an individual I j is reproduced with the probability:

146 Applying Genetic Programming

+

- /

A B 5 -

C 8

*

+

3 *

-

DA

6 E

Figure C.1: The two parental programs selected for crossover represented by
their parse trees and with randomly chosen crossover points shown in bold.

P
(

I j

)

=
f
(

I j

)

M

∑
i=1

f (Ii)

where f
(

I j

)

is the fitness of individual I j in the population at some generation,
and M is (as mentioned earlier) the number of individuals in the population.

The other of the two primary genetic operations is the crossover operation. It
works by selecting two parental individuals based on fitness and then pro-
duces two offspring individuals to be placed in the next generation. To illus-
trate, assume that the two simple arithmetic programs whose parse trees are
shown in Figure C.1 are chosen to take part in a crossover operation.

A crossover point in each of the programs is selected randomly, indicated by
the bold nodes in the figure. The subtrees originating at the crossover points
are then swapped producing the two offspring programs shown in Figure C.2,
where the newly swapped-in subtrees are bolded for clarity.

Applying Genetic Programming 147

+

-

A B

*

+

3

-

DA

*

6 E /

5 -

C 8

Figure C.2: The two offspring programs as a result of the crossover operation.

Reproduction and crossover are the two most used genetic operations in the
evolutionary process, even though a few other operations exist. Worth men-
tioning is the mutation operation, where a program is selected from the pop-
ulation, a random mutation point of its parse tree is chosen and a new ran-
domly generated tree is inserted at this point. Similarly there is a permutation
operation, that randomly chooses a point of the selected program, and then
permutes the arguments of the function at the chosen point. [Koz92, p. 105-
106]

C.2.2 The Algorithm

To summarise, a natural language algorithm describing the process of genetic
programming is given below: [Koz92, p. 77]

1. Randomly generate an initial population of M programs composed from
the set of functions and terminals.

2. Repeat the following steps until the termination criterion is satisfied.

(a) Run each of the programs in the population and measure its fitness,
possibly over a number of fitness cases.

(b) Apply the genetic operations (reproduction, crossover etc.) to pro-
grams selected from the population based on their fitness. Exactly
which operation to be used could be selected probabilistically, where
each operation in question has a fixed probability. (The crossover

148 Applying Genetic Programming

operation typically has the highest probability among the opera-
tions.) Apply the genetic operations until M programs has been
produced.

(c) Then create a new population containing the newly produced pro-
grams and increment the variable counting the generation number.

3. Return the program satisfying the termination criterion. This could e.g.
be the best-so-far individual after G generations.

